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ABSTRACT 

A new set of time-dependent Boussinesq equations is derived to simulate 

nonlinear long wave propagation in coastal regions. Following the approaches by 

Nwogu (1993) and later by Chen and Liu (1995), the velocity (or velocity po- 

tential) at a certain water depth corresponding to the optimum linear dispersion 

property is used as a dependent variable. Further, no assumption for small non- 

linearity is made throughout the derivation. Therefore, the resulting equations 

are valid in intermediate water depth as well as for highly nonlinear waves. Co- 

efficients for second order bound waves and the third order Schödinger equation 

are derived and compared with exact solutions. 

A numerical model using a combination of second and fourth order schemes 

to discretize equation terms is developed for obtaining solutions to the equations. 

A fourth order predictor-corrector scheme is employed for time stepping and the 

first order derivative terms are finite differenced to fourth order accuracy, making 

the truncation errors smaller than the dispersive terms in the equations. Linear 

stability analysis is performed to determine the corresponding numerical stability 

range for the model. To avoid the problem of wave reflection from the conven- 

tional incident boundary condition, internal wave generation by source function is 

employed for the present model. The linear relation between the source function 

and the property of the desirable wave is derived. Numerical filtering is applied 

at specified time steps in the model to eliminate short waves (about 2 to 5 times 

of the grid size) which are generated by the nonlinear interaction of long waves. 

n 



To simulate the wave breaking process, additional terms for artificial eddy 

viscosity are included in the model equations to dissipate wave energy. The dissi- 

pation terms are activated when the horizontal gradient of the horizontal velocity 

exceeds the specified breaking criteria. Some of the existing models for simulat- 

ing the process of wave runup are reviewed and we attempt to incorporate the 

present model to simulate the process by maintaining a thin layer of water over 

the physically dry grids. 

Extensive tests are made to examine the validity of the present model for 

simulating wave propagation under various conditions. For the one dimensional 

case, the present model is applied to study the evolution of solitary waves in con- 

stant depth, the permanent solution of high nonlinear solitary waves, the shoaling 

of solitary waves over constant slopes, the propagation of undular bores, and the 

shoaling and breaking of random waves over a beach. For the two dimensional 

case, the present model is applied to study the evolution of waves (whose initial 

surface elevation is a Gaussian distribution) in a closed basin, the propagation 

of monochromatic waves over submerged shoals of Berkhoif et al. (1982) and 

of Chawla (1995). Results from the present model are compared in detail with 

available analytical solutions, experimental data, and other model results. 

in 
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Chapter 1 

INTRODUCTION 

Accurate prediction of wave transformation in coastal regions still remains 

a challenge for coastal engineers and scientists, despite the fact that intensive in- 

vestigation and significant progress have been made for the last fifty years. The 

complexity of the wave motion in nearshore regions seldom fails to be noticed 

by anyone who spends some time in the beach. Generated in the deep ocean by 

wind, waves travel across continental shelfs and into coastal areas, where a com- 

bination of shoaling, refraction, diffraction and nonlinear interaction takes place, 

resulting in significant changes to the wave property (e.g., the increase of wave 

heights and the steepness of wave faces). As these waves propagate towards shores, 

wave breaking starts to take place in surf zone areas. As a result, wave height 

decreases dramatically and the corresponding wave energy is transferred into nec- 

essary forcing to drive the nearshore circulation and to initialize the process of 

sediment transport. 

In order to describe accurately the propagation of waves, it is necessary 

to use models based on three dimensional (3-D) spaces, i.e. two horizontal coor- 

dinates x and y, and one vertical coordinate z. For most of coastal engineering 

applications, however, it is convenient to construct approximate two dimensional 

(2-D) models which eliminate the vertical dependency. The reason is that 3-D 

models in general are quite complex and demand much more computer power to 



obtain numerical solutions. In addition, 2-D models are reasonably good approxi- 

mations to 3-D models under certain conditions, such as small wave amplitude (the 

linear wave approximation) and small water depth (the long wave approximation). 

Therefore, a great amount of investigation for the field of coastal engineering and 

science has been concentrated on deriving 2-D wave equations and on developing 

the corresponding 2-D numerical models. The existing models include the ray 

tracing model, the mild-slope model (Berkhoff, 1982), the nonlinear shallow wa- 

ter model (Airy, 1845; Lamb, 1945), the Boussinesq models (Boussinesq, 1872; 

Peregrine, 1967; Madsen et c/., 1991; Nwogu, 1993), the Serre models, the Hamil- 

tonian formulation models, and the Green-Naghdi models. Notice that the ray 

tracing model and the mild-slope model are based on the linear wave approxima- 

tion, while the rest of the models mentioned above are based on the long wave 

approximation. All these models have been shown to be successful in obtaining 

wave information accurately when applied within their ranges of validity. Since 

the main objective for this study is to develop a new 2-D wave model which is 

valid for simulating the transformation of nonlinear long waves in coastal regions, 

we will begin, in the following, to review some of the existing wave models based 

on the long wave approximation. The basic assumptions for deriving these models 

and their ranges of validity will be discussed. 

1.1    Review of Existing Long Wave Models 

In order to describe different nonlinear long wave models, it is convenient 

to define three length scales, which include the typical water depth h0, the typical 

wavelength L or the inverse of the typical wavenumber k^1, and the typical wave 

amplitude a0. From these three length scales, we can only obtain two independent 

dimensionless parameters. One is the ratio of wave amplitude to water depth 

(6 = a0/h0), which determines the magnitude of nonlinear effect and thus is 



referred to as nonlinearity. The other independent parameter is the ratio of water 

depth to wave length (fi = ho/L) or equivalently, the product of wavenumber with 

water depth (n = koho), which determines the dispersive effect and thus is referred 

to as dispersion. Depending on the magnitude of these two parameters, various 

assumptions can be made which will result in different approximate models. 

1.1.1    Nonlinear shallow water model 

Airy's theory (1845) or the nonlinear shallow water model is the earliest 

approximate model to describe the propagation of waves in shallow water regions. 

The basic assumption for the model is that the dispersion effect is negligibly 

small (i.e., 0(fi2) = 0), however, there is no restriction for the effect of nonlin- 

earity (0(6) = 1). In deriving the governing equations, the horizontal velocity is 

assumed to be uniform along the vertical direction and the pressure in the fluid 

is hydrostatic. Among the approximate long wave models, the set of governing 

equations for the nonlinear shallow water model has the simplest form. How- 

ever, the model works quite well for the condition that the ratio of water depth 

to wavelength is small, such as in surf and swash zone where the water depth is 

extremely small, or for simulating tidal waves, tsunami, and infra-gravity waves 

whose wavelengths are quite large. By the inclusion of Coriolis acceleration, the 

modified nonlinear shallow water model has been applied in the field of geophysical 

fluid mechanics to obtain solutions to waves whose wavelengths are comparable 

with the width of the ocean basin. 

There have been many numerical models based on the nonlinear shallow 

water equations. The application of these models for simulating tidal waves is 

reviewed by Hinwood and Wallis (1975a,b). Recently, Kobayashi and associates 

(Kobayashi and Watson, 1987; Kobayashi et a/., 1989; Kobayashi and Wurjanto, 



1992; Kaxjadi and Kobayashi, 1994) have developed a series of numerical models 

based on the nonlinear shallow water equations to simulate wave reflection, wave 

setup, wave breaking and wave runup on different slopes and beaches. Bottom 

friction is included in the model and numerical dissipation is used to simulate the 

energy loss due to wave breaking. Özkan and Kirby (1995) applied the nonlinear 

shallow water equations to investigate finite amplitude shear wave instabilities. 

Good agreements between numerical results and experimental data have been 

reported. 

Due to the nondispersive property, the resulting linear phase speed from 

the nonlinear shallow water model is only dependent on the water depth and is 

not related to the frequency of the wave. This is a rather poor approximation to 

the exact linear dispersion relation if the water depth is not extremely small, thus 

greatly limiting the range of validity for the model. Since there are no dispersion 

terms in the model equations to balance the nonlinear terms, the front face of a 

wave will steepen continuously even when the wave is propagating over a constant 

water depth. Therefore, no permanent wave solutions exist for the nonlinear 

shallow water model, in contrast to other nonlinear long wave models which are 

described below. 

1.1.2    Early Boussinesq models 

Another approximate nonlinear long wave model which eliminates the ver- 

tical dependency was derived by Boussinesq (1872). Similar to the nonlinear 

shallow water model, the Boussinesq model involves a set of coupled equations 

whose dependent variables include the surface elevation r\ and the depth-averaged 

velocity ü or velocity potential <j>. However, due to the assumption of small, but 



not negligible, nonlinearity and dispersion (i.e. 0(fj,2)= 0(8) < 1) in the deriva- 

tion, the resulting Boussinesq model includes an additional term which accounts 

for the dispersion effect. The forcing and kinematics for the Boussinesq model 

are fundamentally different from those for the nonlinear shallow water model. In 

the Boussinesq model, the pressure under the water surface includes a dynamic 

part as well as a hydrostatic part, and the variation of horizontal velocity with 

water depth is quadratic instead of uniform. Due to the inclusion of the dispersion 

term, the corresponding linear dispersion relation for the Boussinesq equations is 

a second order polynomial expansion to the exact analytical solution. Compared 

to the nonlinear shallow water model, the Boussinesq model has a larger range of 

validity in coastal regions, if the nonlinear effect is as small as that of dispersion. 

Using the same basic assumptions as those by Boussinesq (1872), Korteweg 

and de Vries (1895) derived an approximate equation for simulating nonlinear long 

waves. The equation is referred to as KdV equation and the surface elevation is the 

only dependent variable. Due to the same assumptions used in the derivation, the 

KdV equation is considered to be an alternate form of the Boussinesq equations for 

the study of surface wave propagation. However, the KdV equation is much more 

popular than the Boussinesq equations in many fields of physics involving waves 

and has thus attracted a large number of physicists to search for the analytical 

solution. The proper balance between the effects of nonlinearity and of dispersion 

in the KdV equation admits permanent wave solutions such as solitary waves and 

cnoidal waves. In addition, there exists an exact solution to the KdV equation 

for arbitrary initial conditions by the method of Inverse Scattering Transform 

(Gardner et a/., 1967). 

Both Airy's theory and the Boussinesq equations are approximate mod- 

els for wave propagation in shallow water regions.   However, the contradictory 



conclusions from the two approaches for the existence of permanent form solu- 

tions have puzzled scientists for several decades, until Ursell (1953) showed that 

the fundamental difference is due to the assumptions in the two models. Ursell 

(1953) defined a parameter UT (the Ursell number) as the ratio of nonlinearity 

to dispersion effects (i.e. Ur = 8/fi2). The magnitude of the Ursell number UT 

determines the range of validity for each model. If UT is much larger than 1, then 

the dispersion effect is negligible and the nonlinear shallow water model should 

be used. On the other hand, if Ur is of 0(1), then the effects of nonlinearity and 

dispersion are of the same order and the Boussinesq model is more valid. 

1.1.3    Standard Boussinesq models 

Due to the limitations of one horizontal dimension and constant water 

depth, the early Boussinesq models cannot be applied to most of the real coastal 

regions where the bottom geometry may vary arbitrarily. Based on perturbation 

theory, Mei and Le Mehaute (1966) and Peregrine (1967) have derived Boussi- 

nesq equations that are valid for variable water depth and for two horizontal 

dimensions. In derivation of these two sets of Boussinesq equations, the effects 

of nonlinearity and of dispersion were all assumed to be small and in the same 

order. However, Mei and Le Mehaute (1966) used the bottom velocity as the 

dependent variables while the depth-averaged velocity was used in the derivation 

by Peregrine (1967). Though both sets of equations are regarded as equivalent 

within the order of approximation in the models, the properties of these two sets 

of equations are slightly different, as will be shown in Chapter 2 for the com- 

parison of linear dispersion relation. Of these two sets of equations, Peregrine's 

equations are more widely used by the coastal community and are referred to as 

the standard Boussinesq equations. Due to the use of depth-averaged velocity, the 

corresponding continuity equation for the standard Boussinesq model is exact. 



Since the derivation of the standard Boussinesq equations, a number of nu- 

merical models have been developed and applied for simulating wave propagation 

in coastal regions. Goring (1978) conducted a series of laboratory experiments to 

study the transmission and reflection of a solitary wave at a depth transition and 

showed that results from the standard Boussinesq model agree well with experi- 

mental data. Abbott et al. (1984) developed a numerical scheme for an alternate 

form of the standard Boussinesq model, where the volume flux instead of the 

depth-averaged velocity is used as a dependent variable. The model is shown to 

be capable of simulating the propagation of short waves in shallow water regions. 

Liu et al. (1985) and Rygg (1988) demonstrated that Boussinesq models give 

accurate predictions of wave refraction and focusing over a submerged shoal in 

the laboratory experiment by Whalin (1971). 

As shown by Freilich and Guza (1984) and by Elgar and Guza (1985), 

models based on the frequency domain formulation of the standard Boussinesq 

equations could be used to predict the evolution of the power spectrum for nor- 

mally incident waves in coastal regions. The capability of the model for predicting 

the evolution of bispectrum or third-moment statistics was demonstrated by Elgar 

and Guza (1986) and by Elgar et al. (1990). For a directional wave train, Freilich 

et al. (1993) implemented a parabolic equation method into the model and showed 

that numerical results agree well with field data. Kirby (1990) showed that an 

angular spectrum formulation of the standard Boussinesq model gives good pre- 

dictions of the evolution of a Mach stem measured in the laboratory (Hammack 

et al, 1989). 



1.1.4    Extended Boussinesq models 

Despite its success for predicting wave transformation in coastal regions 

of variable bottom geometry, the standard Boussinesq model is still limited to 

relatively shallow water areas. McCowan (1987) showed that in order to keep 

errors in the phase speed less than 5%, the water depth has to be less than about 

one-fifth of the equivalent deep water wavelength . For many coastal engineering 

practices, it is desirable to have a general wave model to provide useful wave 

information for an entire coastal area by utilizing data (which is usually available 

at the intermediate water depth) as the model input. Due to its limitation to 

shallow water depth, the standard Boussinesq model is not sufficient to be such a 

general wave model. 

In recent years, extending the range of validity for Boussinesq models to 

intermediate water depth has been an active area of research. As is known in 

applied mathematics, an analytical function is better represented by a Pade ap- 

proximant than by a Taylor series expansion, if the order of expansion is the same. 

As is known, the linear dispersion relation resulting from the standard Boussinesq 

equations is a second order Taylor expansion of the exact solution. Working 

on a generalized wave equation by expanding velocity variables, Whitting (1984) 

obtained a series of forms of linear dispersion relations, including the regular poly- 

nomial expansions (corresponding to Taylor series) and the rational polynomial 

expansions (similar to Pade apprcorimants). Whitting (1984) demonstrated that 

the linear dispersion relation based on the rational polynomial formula agree with 

the exact solution much better than that based on the regular polynomial formula. 

Though it is not easy to generalize Whitting's equation to the case of two horizon- 

tal dimensions and variable water depth, the results suggested that there might 

exist an alternate form of Boussinesq equations whose linear dispersion relation 



is a rational polynomial expansion to the exact solution. 

Madsen et al. (1991) derived such a set of Boussinesq equations for the case 

of two horizontal dimensions and constant water depth. The extension to vari- 

able water depth was made by Madsen and S0rensen (1992). In the derivation of 

the extended Boussinesq equations, additional third order terms with adjustable 

coefficients were added into the momentum equation of the standard Boussinesq 

equations. Though negligible in the limit of shallow water, these added terms 

change the properties of linear dispersion and linear shoaling significantly in in- 

termediate water depth. Instead of a polynomial expansion, the linear dispersion 

from the model becomes a rational polynomial expansion to the exact solution. 

The adjustable coefficients for the added terms can be determined by several 

criteria, including the best fit for the linear phase speed, for the linear group ve- 

locity, or for the linear shoaling property. Detailed description can be found the 

corresponding references above. 

Instead of directly adding the negligible third order terms to the standard 

Boussinesq equations, Nwogu (1993) showed another approach of deriving the 

corresponding extended Boussinesq equations with an improved linear dispersion 

property. Starting from the original 3-D Euler equations and associated boundary 

conditions for an incompressible and inviscid fluid, Nwogu (1993) used the hori- 

zontal velocities at a reference water depth za as the dependent variables. Similar 

to the derivation of other Boussinesq models, the horizontal velocity is assumed 

to vary quadratically with water depth and the irrotational condition is employed 

after the velocity variables are expanded by a power series. The vertical depen- 

dency is eliminated by integrating the equations from the bottom to the surface. 

Compared to the standard Boussinesq equations, Nwogu's equations include extra 

third order dispersive terms in the continuity equation as well as in the momentum 



equations. It is these third order terms that make the resulting linear dispersion 

relation to be a rational polynomial with an adjustable coefficient a, which is 

related to the reference depth za. Based on the method of least square error for 

the linear dispersion relation, Nwogu (1993) obtained the optimum value for the 

coefficient as a = —0.39, corresponding to the reference depth of za = —0.531 h, 

about half of the still water depth. 

An alternate form of Nwogu's equations was derived by Chen and Liu 

(1995), who used the velocity potential, instead of the horizontal velocity, at a 

certain depth as a dependent variable. The equations were derived from the 

Laplace's equation which implies the irrotationality of the wave motion. The 

derivation of Chen and Liu (1995) is much simpler but resulted in the same rational 

polynomial form of the linear dispersion relation as that from Nwogu (1993). 

Although the approaches used by Madsen et al. (1991) and by Nwogu 

(1993) are quite different, the resulting linear dispersion relations from these two 

sets of extended Boussinesq equations are similar, both of which are a rational 

polynomial expansion (Pade approximant) to the exact solution. The improved 

linear dispersion property in intermediate water depth makes the range of validity 

for the extended Boussinesq models larger than that for the standard Boussinesq 

model. Numerical models based on the extended equations have been developed 

and applied to simulate wave propagation using input data from the intermediate 

water depth (Madsen et al, 1991; Nwogu, 1993; Wei and Kirby, 1995). The 

numerical model based on the frequency domain formulation was developed by 

Kaihatu (1994). The agreements between the numerical results and the available 

experimental data demonstrate that the extended Boussinesq models are capable 

of simulating the propagation of waves in coastal regions where the water depth 

can be as deep as about half of the wavelength. 

10 



The nonlinear shallow water model and the Boussinesq models described 

so far are derived using the standard perturbation method, based on power expan- 

sions of the velocity (or velocity potential) and the surface elevation. As will be 

shown below, there are alternate ways to obtain approximate models for nonlinear 

long wave propagation. 

1.1.5    Serre models 

For long wave propagation over a constant water depth, Serre (1953) de- 

rived a set of approximate equations which are referred to as Serre equations. In 

the derivation, the horizontal velocity is assumed to be uniform and the vertical 

velocity varies linearly with water depth. However, different from the derivations 

of the nonlinear shallow water equations or the Boussinesq equations, the con- 

dition of irrotationality is not assumed, though the assumption of inviscid and 

incompressible fluid is still applied. 

Compared to the nonlinear shallow water equations, the Serre equations 

include dispersion terms which provide a force balance to nonlinear terms. There- 

fore, the Serre equations admit permanent wave solutions. The closed form solu- 

tion of solitary waves is given by Su and Gardner (1969) and by Seabra-Santos 

et al. (1987). As will be shown later in Chapter 5, the solitary wave solution 

from the Serre equations does not compare very well with the exact solution of 

Tanaka (1986) for the case of high nonlinearity, probably due to the inaccurate 

assumption of velocity variation with water depth. 

An interesting fact is that the Serre equations can be derived on the basis of 

different (or contradictory) assumptions and methods. Starting from the continu- 

ity and Euler equations which govern wave motion in inviscid and incompressible 

fluid, Su and Gardner (1969) first obtained a general set of integral equations 

11 



using a power series expansion for the dependent variables. Then by applying the 

condition of irrotationality and long wave approximation, the set of integral equa- 

tions is transformed into the same form of Serre equations. Based on the Laplace's 

equation and using the standard perturbation method to expand the dependent 

variables, Mei (1989) derived a set of fully nonlinear Boussinesq equations for 

constant water depth. Despite the fact that the condition of irrotationality is as- 

sumed in the derivation and that the variation of horizontal velocity is quadratic 

with water depth, the resulting set equations of Mei (1989) is equivalent to that 

of the Serre equations. As will be described in a later section, the original set of 

equations derived by Green and Naghdi (1974) based on the theory of fluid sheet 

is also the same as that of the Serre equations. 

The extension of the Serre equations to 2-D horizontal directions and vari- 

able water depth was obtained by Seabra-Santos et al. (1987). Numerical models 

based on Serre equations have been developed and applied to simulate the prop- 

agation of waves under certain conditions. The transformation of a solitary wave 

over a shelf was investigated by Seabra-Santos et al. (1987) using the correspond- 

ing Serre model. Dingemans (1994) showed the comparison of the computed 

results from a number of nonlinear long wave models including Serre models with 

experimental data for regular wave shoaling and breaking over an under water bar. 

In both cases, results from Serre models gave good agreement with experimental 

data. 

1.1.6    Hamiltonian formulation models 

The existence of a Hamiltonian for irrotational flow with a free surface lead 

investigators to derive the corresponding canonical evolution equations for wave 

propagation based on the Hamiltonian formulation. Broer and associates (Broer, 

12 



1974; Broer, 1975; Broer et al., 1976) proposed to write the Hamiltonian as the 

sum of the kinetic and the potential energy contributions. It is straight forward 

to represent the potential energy explicitly by the canonical variables of surface 

elevation and velocity potential at the surface. However, this is not the case for 

the kinetic energy unless the condition of weak nonlinearity is satisfied. For this 

reason, the Hamiltonian formulation is restricted to the case of small nonlinear 

effect. 

The linear dispersion relation of the canonical equations derived by Broer 

is equivalent to that obtained from the Boussinesq equations which use the sur- 

face velocity (potential) as a dependent variable. Due to a prediction of negative 

phase speed for certain short waves, the corresponding model is not suitable for 

the case in intermediate water depth or when short waves are present. To extend 

the validity of the Hamiltonian formulation model to a deeper water depth, Van 

der Veen and Wubs (1993) employed a rational polynomial operator to replace 

the regular polynomial operator in Broer's formulation. The resulting dispersion 

relation thus becomes a Pade approximant to the exact solution, similar to that of 

the extended Boussinesq equations derived by Madsen et al. (1991) and by Nwogu 

(1993). A more complicated formulation of canonical equations was derived by 

Mooiman (1991), who used a rational polynomial operator with additional prop- 

erty of positive-definiteness. The two coefficients in the operator are determined 

by the best fit of the linear dispersion relation to the exact solution. 

1.1.7    Green-Naghdi models 

Approximate governing equations for long wave propagation can also be 

derived using the theory of fluid sheet originated by Green et al. (1974) and 

by Green and Naghdi (1976). These equations are now commonly referred to as 
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Green-Naghdi or GN equations. In this approach, the kinematic properties of 

the velocity field are first assumed to have a certain form. The corresponding 

coefficients for the velocity field are later determined based on conservation laws 

for incompressible and inviscid flow. Due to the facts that there are no scaling 

assumptions for the ratio of wave height to water and that all boundary data are 

evaluated at the instantaneous free surface, the Green-Naghdi models are fully 

nonlinear. 

The original GN equations derived by Green et al. (1974) and by Green 

and Naghdi (1976) assume a uniform distribution of horizontal velocity and a 

linear variation of vertical velocity with water depth, which are the same kinematic 

assumptions as those made in the Serre models. As demonstrated by Kirby (1996), 

the original GN equations and the Serre equations are exactly the same. 

The original GN equations can be extended by assuming a more realistic 

velocity field. A framework for such an extension has been provided by Shields 

(1986) and by Shields and Webster (1988, 1989). In this approach, the velocity 

field is first represented by a combination of certain basis functions. The evolution 

equations of the basic functions are then obtained based on conservation laws. 

The mass conservation and the kinematic free surface boundary conditions are 

satisfied exactly. However, the corresponding Euler equations are satisfied in 

an approximate sense, using a weak variational formulation in which the basis 

functions are used as weighting functions. The more number of the basis functions, 

the more accurate and complicated the model becomes. 

Shields and Webster (1988) have shown examples of calculations for soli- 

tary and cnoidal waves for GN models up to level three (using up to three basis 

functions). The convergence rate towards the numerically exact results of wave 

shape and wave speed from GN models is shown to be greater than that of the 
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models derived based on the conventional perturbation method. Calculations of 

wave shoaling in variable water depth are provided by Shields (1986) and good 

agreement is observed between model results and experiment data of Hansen and 

Svendsen (1979). Additional example calculations for GN models are provided 

by Demirbilek and Webster (1992). Webster and Wehausen (1995) applied a GN 

model to study resonant Bragg reflection of surface waves by undular bed features. 

1.2    Outline of the Dissertation 

The aim of this study is to construct a comprehensive wave model which 

is capable of simulating the transformation of waves in coastal regions, includ- 

ing areas in the intermediate water depth and in the surf zone. To accomplish 

this, we derive a set of fully nonlinear Boussinesq equations with a wide range of 

variety and develop a high order numerical model to obtain the corresponding so- 

lutions. The model is examined extensively by applying it to various cases of wave 

propagation and the model results are compared with available exact solutions, 

numerical results, and experimental data. 

In Chapter 2, the fully nonlinear Boussinesq equations are derived based 

on perturbation theory. Following the approaches of Nwogu (1993) and of Chen 

and Liu (1995), the velocity potential is expanded by a power series in which the 

dependent variable is the potential at a reference water depth. By substituting 

the approximate expansion into the original wave equations and by keeping all 

nonlinear terms, a set of fully nonlinear Boussinesq equations is obtained. Due 

to the use of the optimum reference water depth and the fact that no assump- 

tion of small nonlinearity is made in the derivation, the resulting equations not 

only improve the linear dispersion property in intermediate water depth but also 

are valid for cases involving strong nonlinear interaction, such as wave shoaling 
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prior to breaking. In order to demonstrate the nonlinear properties of trie fully 

nonlinear Boussinesq equations, the coefficients for second order bound waves and 

the corresponding cubic Schrödinger equation are obtained and compared to the 

exact solutions obtained by Dean and Sharma (1981) and by Mei (1989). 

A high order numerical model for solving the fully nonlinear Boussinesq 

equations is described in detail in Chapter 3. To ensure that the numerical trun- 

cation errors are smaller than the dispersive terms in the equations, the fourth- 

order Adams-Bashford-Moulton predictor-corrector scheme is employed to step 

in time, and a combination of second and fourth order finite difference schemes 

is used to discretize the spatial derivative terms. Based on the method of von 

Neumann (Hoffman, 1992), the linear stability range of the model is evaluated 

numerically for the case of one horizontal dimension and constant water depth. 

The boundary conditions of reflecting, absorbing and generating waves used in the 

model are described. The linear analytical relation between the source function 

and the properties of a desirable wave is derived and is applied in the model to 

generate waves inside the computing domain. To eliminate short waves which are 

generated by nonlinear interaction and which might cause stability problems, the 

numerical filter proposed by Shapiro (1970) is employed in the model. 

In Chapter 4, the methods of simulating the process of wave breaking in 

surf zone areas and the process of wave runup over beaches by the present model 

are described. Following the approach of Zelt (1991), wave breaking is modeled 

by adding the eddy viscosity terms to the momentum equations to dissipate wave 

energy. These terms are turned on when the local wave property, such as the spa- 

tial derivative of the horizontal velocity or the slope of surface elevation, exceeds 

a certain criterion. In addition to including the bottom friction terms into the 

model equations, we propose a method to model the process of wave runup in an 
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Eulerian system by maintaining a thin layer of water on the physically dry part of 

the model grids. More research work is needed to solve the problem of instability 

which occurred at the intersection between the dry and wet grids. 

Chapter 5 presents the computational results obtained by the present model 

for a wide variety of cases of wave propagation. For the one dimensional case, the 

model is applied to study the evolution of solitary waves over a constant water 

depth, the permanent form solution of solitary waves with high nonlinearity, the 

shoaling of solitary waves over constant slopes, the propagation of undular bores 

in constant water depth, and the shoaling and breaking of random waves over 

a constant slope. For the two dimensional case, the model is applied to study 

the evolution of waves in a closed rectangular basin and the transformation of 

monochromatic waves over submerged shoals. Results from the present model 

are compared with available analytical solutions, numerical solutions from other 

models, or experimental data. 

The conclusion of this study for developing the fully nonlinear Boussinesq 

model and comments on future research work are offered in Chapter 6. 
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Chapter 2 

FULLY NONLINEAR BOUSSINESQ EQUATIONS 

2.1    Introduction 

As stated in Chapter 1, the extended Boussinesq equations derived by 

Madsen et al. (1991) and by Nwogu (1993) increase the range of validity of these 

models to the intermediate water depth, if linear dispersion properties are used as 

the criterion for determining the model applicability. Despite the differences in the 

method of derivation and in the final forms of the governing equations, both of the 

linear dispersion relations of Madsen et al. (1991) and of Nwogu (1993) are Pade 

approximants to the exact solution, which are a much better representation of the 

exact dispersion relation than is provided by the polynomial approximations from 

standard Boussinesq equations. To illustrate this, the linear dispersion relation 

from Nwogu's equations will be analyzed in detail below. 

For wave propagation in one horizontal dimension over a constant water 

depth, the extended Boussinesq equations derived by Nwogu (1993) are linearized 

as: 

r)t + huax + (a + lß)h3uaxxx   =   0 (2.1) 

uat + grjx + ah2uaxxt   =   0 (2.2) 
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where 77 is the surface elevation, ua the horizontal velocity at the reference depth 

z = za, h the constant water depth, and a a parameter related to the ratio of 

za/h and is defined as 

Depending on the choice of reference depth za (or, more conveniently, the 

value of a), we can obtain different sets of governing equations with velocity ua 

as the dependent variable. Though these sets of equations are equivalent mathe- 

matically to the order of approximation used in the derivation, the corresponding 

linear dispersion relations are quite different. Assume that a sinusoidal wave with 

wavenumber k and angular frequency u propagates in x direction, and that rj0 

and ua0 are the amplitudes of the surface elevation 77 and horizontal velocity ua. 

By substituting (f],ua) = (rj0,ua0) exp[i(kx — ut)] into equations (2.1)-(2.2), we 

obtain the linear dispersion relation 

2       72Ll-(a + l/3)(M)2 ,     x 

"  =9kH       l-c/4 (2'4) 

which is to be compared with the exact linear dispersion relation 

w2 =gktanh(kh) (2.5) 

Figure 2.1 shows the comparison of linear dispersion relations between the 

exact solution (2.5) and the approximate relation (2.4) for several choices of a 

values, which are a =(0, -1/3, -0.39, -0.4, -0.5). From equation (2.3), the cor- 

responding ratios of reference depth to still water depth are za/h = (0, -0.423, 

-0.531, -0.553, -1). Notice that the numerator in (2.4) becomes zero for the case of 

a = —1/3, which is equivalent to the linear dispersion relation obtained from the 

standard Boussinesq equations. The case of a = —0.4 corresponds to the exact 

(2,2) Pade approximant to the exact solution. Though the curve for a = —0.4 is 
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much closer to the exact line than that for a = —1/3, there exist better fit curves 

for other a values. Nwogu (1993) obtained the optimum value as a — —0.39, 

based on the minimum sum of relative error for the phase speed over the range 

from kh = 0 to kh = 5. 
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Figure 2.1: Comparison of linear dispersion relations between the exact solution 
(middle solid line) and those of Nwogu's equations for several values 
of a: a = -0.5 ( ); a = -0.4(- •••);<* = -0.39 (-•-•); a = -1/3 
(-—);<* = 0(—). 

Despite the improved linear dispersion relations, the extended Boussinesq 

equations of Madsen et al. (1991) and of Nwogu (1993) are still restricted to 

situations with weakly nonlinear interactions. In many practical cases, however, 

the effects of nonlinearity are too large to be treated as a weak perturbation to 

a primarily linear problem.  As waves approach a beach, the effects of shoaling 
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and nonlinear interaction change the wave properties significantly, leading waves 

to break on most of the gentle natural slopes. The large ratio of wave height to 

water depth accompanying this physical process makes it inappropriate for using 

the weakly-nonlinear Boussinesq models, and thus extensions to the models are 

required in order to obtain a computational tool which is locally valid in the 

vicinity of a steep, almost breaking or breaking wave crest. 

An additional (and less obvious) limitation imposed by weakly nonlinear 

Boussinesq models occurs in the higher frequency range, which is precisely the 

range of linear behavior incorporated by the modifications of Madsen et al. (1991) 

and Nwogu (1993). As an illustration, we consider the range of validity for Boussi- 

nesq wave models in Figure 2.2, where the horizontal and vertical axes represent 

dispersive effects (p2 = (kh)2) and nonlinear effects (6 = a/h), respectively. The 

standard Boussinesq equations are based on the assumption that 8, p < 1 and 

8In2 = 0(1), after which terms of 0{p4,8p2,62) are neglected. The range of valid- 

ity is thus bounded not only by some arbitrary value for 8 and p2, but also by the 

curve ci which represents some value of 8p2. Suppose that the limit of validity for 

the standard Boussinesq equations corresponds approximately to 8 = p2 = 0.2. 

The value of cr is then represented by 8p2 =0.04, as shown in Figure 2.2. It 

is apparent that the limit of usefulness of the standard Boussinesq model is not 

controlled primarily by cu which represents the neglected nonlinear effects in dis- 

persion terms. If we introduce the model extensions of Madsen et al (1991) or 

Nwogu (1993), however, the implied limit of validity for p2 becomes much higher. 

We see that this extended region is reduced in size by the neglected nonlinear 

dispersive terms, represented by the region above c\. 

The extension of the range of validity of the linear models achieved by 

Madsen et al. (1991) and Nwogu (1993) is limited in the nonlinear regime by the 
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Figure 2.2: Hypothetical limits of validity of approximate long wave models. 
Dark gray — standard Boussinesq models. Light gray — additional 
region of validity for extended Boussinesq models of Madsen et al. 
(1991) and Nwogu (1993). Curve cx denotes 6/J? = .04. Curve c2 

denotes 8/J.
4
 = .04. 

fact that the curve c\ approaches the horizontal axis for large fi2 values. This 

places serious constraints on the steepness of waves which are actually allowed in 

the intermediate water depth. If we, however, introduce a fully nonlinear model 

within the context of the Boussinesq dispersion approximation, then all terms of 

0(fi2) including 0(Sfi2) will be kept and the lowest order nonlinear terms to be 

neglected is of 0(6fi4). As a result, the validity of range for the fully nonlinear 

model is enlarged significantly and is formally controlled by the required smallness 

of 8fi4, as illustrated by the curve c2. We thus seek to achieve a wider range of 
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validity for the model over the entire range of water depths. 

In Section 2.2, a detailed derivation of the fully nonlinear Boussinesq equa- 

tions will be given. First, the 3-D governing equation and associated boundary 

conditions for the incompressible, inviscid and irrotational flow are transferred 

into dimensionless forms, making the magnitude of each term in the equations ex- 

plicit by the corresponding parameters. Second, following the approach of Chen 

and Liu (1995), the velocity potential is approximated by a power series expansion 

based on a certain water depth. Vertical dependency is eliminated by substituting 

the approximate expression of velocity potential into the equations. By keeping 

all nonlinear terms with 0(fi2), a set of fully nonlinear Boussinesq equations is 

obtained. 

In Section 2.3 and Section 2.4, analytical properties of the fully nonlinear 

Boussinesq equations will be examined by deriving the coefficients for second order 

bound waves and the third order Schrödinger equation in a Stokes-type expansion. 

Comparisons with exact solutions by Dean and Sharma (1981) for bound waves 

and by Mei (1989) for the Schrödinger equation will be given. 

2.2    Derivation of Equations 

Two methods can be used to derive the fully nonlinear Boussinesq equa- 

tions. The first method uses Euler equations and associated boundary conditions 

for incompressible and inviscid flow, as in the approach of Nwogu (1993) used 

to derive the extended Boussinesq equations. Velocities are used as variables and 

the condition of irrotationality is applied after introducing power series expansions 

to the velocity field. The second method uses Laplace's equation and boundary 

conditions to begin with the derivation, as in Chen and Liu (1995). In addition 

to the usual assumptions for incompressible and inviscid fluid, irrotationality is 
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implied due to the use of Laplace's equation for potential flow. Velocity poten- 

tial, instead of velocities, is the dependent variable. Though the same set of fully 

nonlinear Boussinesq model have been derived by both methods, only the second 

(less complicated than the first) is shown in the following. 

To describe the propagation of waves, we first define a 3-D Cartesian co- 

ordinate system where x and y are horizontal coordinates and z is the vertical 

coordinate. The direction of z is upwards and the origin of z is at the still water 

surface. Then for irrotational wave motion in incompressible and inviscid fluid, 

the corresponding 3-D governing equation and boundary conditions are: 

<f>zz + VV = 0: 

<j>z + Vh-V<j> = 0 

m + iß* + \[F<t>f + («y2] = o 

-h<z<r) (2.6) 

z = -h (2.7) 

Z = T) (2.8) 

z = 7] (2.9) rjt + V<£ • VT? - <f>, = 0; 

where <j> = <f>(x, y, z, t) is the velocity potential, r) = r)(x, y, t) the surface elevation, 

h = h(x, y) the still water depth, V = (d/dx, d/dy) the horizontal gradient oper- 

ator, and subscripts z and t denote partial derivative with respect to z and time t, 

respectively. Equations (2.7) and (2.9) are the kinematic boundary conditions at 

the bottom and at the free surface, while equation (2.8) is the dynamic boundary 

condition at the free surface. 

It is convenient to use dimensionless variables for the derivation. Following 

the approach of Mei (1989), we first assume k0, h0 and üQ to be the typical 

wavenumber, the typical water depth and the typical wave amplitude, with which 

the following dimensionless variables are defined: 

(a;', y') = k,(x, y),      z' = ■£-,      ?/' = — 
«0 GO 

*' = k0{ghof'\      4? = [^L(^0)i/2]-^ (2.10) 
«0"0 
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Equations (2.6)-(2.9) are then transformed into dimensionless forms as: 

<ßzz + li'V<ß = 0 

r} + <i>t + ^[(V^)2 + 1(^)2] = 0 

-h<z<6rj (2.11) 

z = -h (2.12) 

z = 8r) (2.13) 

tit + 8V<j> ■ VT? - — <j>z = 0; z = <5T? (2.14) 

where the prime sign for all the dimensionless variables have been dropped for 

convenience. Notice that the water depth h is also a dimensionless variable (scaled 

by h0). Parameters ft2 = (kQh0)2 and 8 - a0/h0 are the scales for the dispersion 

effect and the nonlinearity effect, respectively. 

2.2.1    Approximate expression for the velocity potential 

To reduce the dimensionality of the boundary value problem defined by 

equations (2.11)-(2.14), the velocity potential <f> is expanded as a power series 

with respect to z = — h: 

<t>{x,y,z,t) = Y,{z + h)n<j>n{x,y,t) (2.15) 
71=0 

The corresponding derivatives are given by: 

oo oo 
V<j>    =     £(* + A)nWn + £"(* + Ä)n-VnV/l 

n=0 n=l 
oo 

=   EC* + Ä)'W» + (n + lMl+iVfc] (2.16) 
n=0 
oo oo 

VV   =   yE(z + h)nV2<f>n + 2j2n(z + h)n-1[Vh-V<l>n + V-(<f>nVh)] 
n=0 n=l 

+f>(« - l)(z + h)n-2<t>nV
2h 

n=2 
oo 

= EC* + hT {vVn + (n + i)[v/> • v<£n+1 + v • fan+iVÄ)] 
n=0 
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+{n + 2)(n + l)fa+2V
2h} (2.17) 

oo 

fa   =   j]n(^ + Ä)n-Vn 
71=1 

OO 

=     Efc + ^rfa + Wn+l (2-18) 
n=0 

oo 

&» = x;n(n-i)(2r+Ä)B"V« 
71=2 

oo 

= E(2r+ftr("+2)(n+i)^+2 (2.19) 
71=0 

Substituting (2.16) and (2.18) into the bottom boundary condition (2.12) 

results in: 

* = vi+*»(vt)» = Vv&' v*°+ 0(/) (2-20) 

where |(VÄ)2| is assumed to be of 0(ß2) or smaller, which implies that the slope of 

bottom geometry should be small. By substituting (2.17) and (2.19) into Laplace's 

equation (2.11), we obtain the recursion relation: 

, =        a (VVn + (n + l)[Vh ■ Vfa+1 + V • (fa+1 Vh)] 
9n+2 * (n + 2)(n + l)[l + M2(V/*)2] 

- 2 (V^n + (n + l)[Vfe • Vfa+1 + V • (fa+1Vh)] - ß _____ + ü{ß ) (2.21) 

(n = 0,l,2,-..) 

which gives 

fa   =   -^[v2fa + Vh-Vfa+V-(faVhj\+0(ß4) 

-   -yVVo + O^) (2.22) 
2 

fa   =   -y{vVi + 2[V/i-V<?i2 + V-(^2V/l)]} + 0(/x4) 

=   0(fx4) (2.23) 
2 

&   =   -^{v2fa + 3[Vh-Vfa + V-{faVh)]} + 0(fi4) 

=   0(M
4) (2.24) 
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and so on. Therefore, an expression for (j> which retains terms to 0{(i2) is given 

by 

<j>=<f>o- n2(h + z)Vh • V<j>0 - \i- :(h + zy Wo + 0(M
4) (2.25) 

where <j>0 = <£(a:,y,z = — h,i) is the value of velocity potential <f> at the bottom. 

In practice, we may replace <f>o by the value of the potential at any level in the 

water column. Any choice will lead to a set of model equations with the same level 

of asymptotic approximation but with numerically different dispersion properties. 

Following the approaches of Nwogu (1993) and Chen and Liu (1995), we denote 

<f>a as the value of <$> at z = za(x, y), or 

<f>a = <f>o- (x2(h + za)Vh • V&, - /^^"Y^-VVO + 0(fx4) (2.26) 

This expression is then used in (2.25) to obtain an expression for <j> in terms of 

<t>a'- 

cf>=<f>a + fl2 [(*, - *)V • (hV<f>a) + ~(zl - Za)Wa] + 0(//4) 

from which corresponding derivatives for <f> are obtained as: 

V(j>   =   V^ + /i2{vzaV-(W^) + (^-z)V[V-(W^)] 

(2.27) 

4» -P 

+ zaVzaV
2<j>a + \{zl - Z2)V(Wa)} + 0{fXA)   (2.28) 

V • (hV<f>a) + aVVal + 0(fi4) (2.29) 

<t>t   =   <f>at + ß2{(za-z)V-(hV<f>at) + ^(zl-z2)V2<l>a^ + O(^)(2.30) 

The above forms of the velocity potential <f> and its derivatives are then used in 

the governing equations (2.11)-(2.14) to obtain the approximate model equations. 
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2.2.2    Two-equation model for 77 and <f>0 

Integrating (2.11) from z = — h to z = —8r) and applying the kinematic 

boundary conditions (2.12) and (2.14) gives the continuity equation: 

rjt + V • M = 0 

where M is the volume flux of the fluid which is defined as: 
/6rj 

V(j>dz 
■h 

(2.31) 

(2.32) 

Substituting (2.28) into the integral yields 

M   =   (h + 8ri)lv<j>a + ti2V 

, Ah - SV) 

*«V-(AV60 + -^VVo 

-V[V-(hV<j>a)}- 
li2(h2 - hSr, + 62r)2) 

V2V<j>a \ (2.33) 
2 'L'    VT"» 6 

The expression goes to zero identically as the total depth (h + Srj) goes to zero, 

which serves as a natural shoreline boundary condition. 

By substituting equations (2.28)-(2.30) into equation (2.13), we obtain the 

Bernoulli equation: 

v + ^ + ^(v^)2 + ^{(za-^)v.(w^ + ^-W2]v2^} 
+   8fx2 { V^ • [VzaV • (hV<f>a) + (*« " ^)V (V • (ÄV6,))]} 

+   ^2 {\ [V • (hV^)}2 + SrjV ■ (hV<f>a)V2<j>a + ^(^)2(V2^)2} 

+   Six2 { V*« • \zQVzaV
2<f>a + \{z2

a - (Sri)2)V(V2^)]} = 0 (2.34) 

Equations at the order of approximation of the weakly nonlinear Boussinesq 

theory may be immediately obtained by neglecting terms of 0(8 (i2) or higher. The 

modified expression for volume flux M is 

M   =   (k + 8r))V<j>a + ii2hV zaV-(AV60 + -^VV« 
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2A2 n2h 
V[V • (hV<f>a)} - 'f72V<j>a (2.35) 

and the Bernoulli equation reduces to 

V + ^t-^-^^f + ß2 1 
^V.(ÄV^) + |4vV«t = 0 (2.36) 

Equations (2.35) and (2.36) were given previously by Chen and Liu (1995). These 

results may be compared to the two-equation model of Wu (1981), which uses 

the depth-averaged value of velocity potential <£. The two models of Chen and 

Liu (1995) and of Wu (1981) are essentially the same within rearrangements of 

dispersive terms. 

2.2.3    Three-equation model based on r\ and ua 

For most coastal engineering applications, it is desirable to have velocities 

instead of velocity potential as the dependent variables. Introducing uQ as the 

horizontal velocity vector at the depth z = zQ, we have 

u„   = 

Vic +1? [VzQV • (hV<f>Q) + zaVzaV
2<t>a] + 0(fi4)        (2.37) 

which gives 

V<j)a = ua - fi2 [VzQV • (hua) + zaVzaua] + 0(fi4) (2.38) 

Substituting (2.38) into (2.33) and retaining terms to 0((i2) and to all orders in 

6 gives the corresponding volume flux 

M   =   (h + 6ri){ua + v2^z2
a-±(h2-h8r) + (6T,)2)]v(V-ua) 

+ V2 [*a + \{h - 6ti)] V[V • (/ma)]} + <V) (2.39) 
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By taking the horizontal gradient of (2.34) and then substituting equation (2.38), 

we obtain the corresponding momentum equation 

Uat + *(u« • V)ua + Vi/ + ^2Vi + 6fi2V2 = 0(fi4) (2.40) 

where 

1 1 
Vi   =   -zy{V-uat) + zaV[V-(huat)]-V[-{8ri)2V-uat + 8riV-{huat) 

(2.41) 

V2     =    V^a-^XUa-VJlV-CAUaM + i^-^Ku^-VKV-U«)} 

+Iv {[V • (Äu„) + 6VV • ua]2} (2.42) 

The Boussinesq approximation of Nwogu (1993) is recovered by neglecting 

terms of 0(6//2) or smaller, yielding the expressions 

M = (h + 8V)xia   +   fhl(£-j)v(V-ua)+(za + ^V[V •(/*<)] j 

+   0{6p2) (2.43) 

and 

uat + S(ua • V)ua + V17 + fi2 j ^V(V • uat) + zaV [V • (Auat)] | = 0(8 fi2) (2.44) 

The two versions of fully nonlinear Boussinesq model derived here all have 

volume flux M —> 0 at the shoreline, where the total water depth (h + Srf) —*■ 0. 

This result is expected on physical grounds and appears in the nonlinear shallow 

water equations and in the standard Boussinesq models where the depth-averaged 

velocity is the dependent variable. However, this condition is not automatically 

satisfied by Nwogu's or other weakly nonlinear Boussinesq model based on a veloc- 

ity other than the depth-averaged value, making the application of these models 

problematic at the shoreline. All fully nonlinear variations of any of the possible 

model systems should recover this condition correctly. 
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Before applying numerical schemes to obtain approximate solutions to the 

fully nonlinear Boussinesq equations derived above, we first examine the corre- 

sponding analytical properties from the equations. In the following sections, the 

coefficients for second order bound waves and the third order Schrödinger equation 

will be derived and compared with exact solutions obtained by Dean and Sharma 

(1981) and by Mei (1989). Comparison for bound wave coefficients are also made 

for the fully and weakly nonlinear versions of the present model. 

2.3    Bound Wave Generation 

One of the important properties for nonlinear wave equations is to gen- 

erate bound waves at the sum and difference frequencies of the primary waves. 

The nonlinear transfer of wave energy between the spectral components for a 

random sea state have been studied extensively by Hasselmann (1962). Starting 

from equations (2.6)-(2.9), Hasselmann (1962) obtained the transfer coefficients 

for velocity potential up to fifth order. Using the same equations and perturba- 

tion method, Dean and Sharma (1981) also obtained the explicit expressions for 

the magnitude of the second-order bound waves, which will be used as the exact 

solution to compare with. To show the validity of the extended Boussinesq equa- 

tions, Madsen and S0rensen (1992) and Nwogu (1993) derived the corresponding 

coefficients for these bound waves and compared with exact solutions of Dean 

and Sharma (1981). As we know, these extended Boussinesq equations are only 

valid for the weakly nonlinear case. In order to demonstrate the importance of 

high order nonlinear terms in the fully nonlinear Boussinesq equations, we follow 

the approach of Nwogu (1993) to derive the corresponding expressions for bound 

waves and compare with the exact and Nwogu's solutions. 

For the case of constant water depth h, the natural choice for vertical length 
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scale is h0 = h. Therefore, the dimensionless variable for water depth is one and 

the fully nonlinear Boussinesq equations (2.31)-(2.34) using rj and <f>a as variables 

reduce to 

Vt   +   VV* + //VV2 (VV«) + *V • (r/V^) + Sfi2aV ■ [»yV(W«)] 

*y 
■V- y VCV2^)] + ^V • [T/

3
V(V

2
^)] = o (2.45) 

v + ^+Av2^ + -w-Vh + önv^ at 

+     V a — 6?7 — —82rj2 V^-V(V2^) 

+ ^[i + 2^ + ^V](Wa)
2 = o (2.46) 

where 77, <£a, 6 and (x2 are the same as defined previously, a and «i are constants 

which are defined as 

Oi —   n^a    '    ZCf> ax = a + (2.47) 

For the study of a forced second-order sea, only terms up to 0(8) are useful 

and must be kept. For convenience, we denote <f> = (j>a from now on. To 0(8), 

equations (2.45) and (2.46) become 

Vt   +   VV + A*i V2 (VV) + 8V • (r}V<f>) 

+   8fi2aV ■ [r/V(VV)] = 0 (2.48) 

f,   +   <f>t + ß2aV% + ^(V<f>f-8fi
2r1V

2<j>t + 6-^-(v24>)2 

+   8n2cN<f> • V(V2<f>) = 0 (2.49) 

To obtain the solution for bound waves, we first expand 77 and 4> as 

rj   =   TIX + 8TI2 + --- (2.50) 

<j>   =   <f>1 + 8<j>2 + --- (2.51) 
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where subscripts 1 and 2 denote the primary and the secondary wave components, 

respectively. Then by substituting the expansions into equations (2.48)-(2.49), we 

obtain two sets of equations corresponding to different powers of 8. To 0(1), we 

have 

Vu + VVi + A*2oiV2(VVi) = 0 (2.52) 

fat + Vi + fctV2fat = 0 (2.53) 

which are the linearized forms of the fully nonlinear Boussinesq equations and are 

exactly the same as those obtained by Nwogu (1993). To 0(6), we have 

V2t + V2fa + AxV^V2^)   =   -V • faVfa) - ix2aV ■ [jfcV(VVi)] (2.54) 

fat + m + Av2^ = -I(vfc)a + AiVV»-y(vVi)2 

-H2cX4> ■ V(VV) (2.55) 

where terms on the right hand sides represent the nonlinear interaction of the first 

order free waves rji and fa. These free waves serve as the forcing terms for second 

order bound waves 772 and fa. Compared with the corresponding forcing equations 

obtained by Nwogu (1993), terms with 0(fi2) on the right hand side of equations 

(2.54) and (2.55) are extra. As will be shown later, it is these terms which improve 

the accuracy of bound wave coefficients for the case of large nonlinearity. To obtain 

the forcing coefficients, we introduce a linear random sea which consists of infinite 

number of waves with different frequencies and directions 

00 

m   =   XX00^ (2.56) 
n=l 
00 

fa   =   J^&nsinV'n (2.57) 
n=l 

ij>n   =   kn-x-u;n< + fn (2.58) 

where subscript n is the n-th wave component, kn the wavenumber vector, x the 

horizontal coordinate vector, un the angular frequency, and £n the initial phase 
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of the wave. Substituting equations (2.56)-(2.58) into equations (2.52) and (2.53) 

yields 

fc2[l-^W2]      un[l-fakl] ^DUj 

where kn is the magnitude of wavenumber vector |kn|, i.e., kn = |kn|. Equation 

(2.59) is the linear dispersion relation of the fully nonlinear Boussinesq equations 

and equation (2.60) is the corresponding linear relation between the amplitudes of 

velocity and surface elevation. These two relations are exactly the same as those 

from the extended Boussinesq equations of Nwogu (1993). 

By substituting equations (2.56)-(2.58) into equations (2.54) and (2.55) 

and by utilizing relations (2.59) and (2.60), we have 

r\2t + V2fa + fax V2{V2fa) 

= 7 Yl 53 °»fl' \f%i s"1^™ + 0/) + Fmi sin(V'm - i>i)\    (2.61) 

fat + V2 + H2aV2fat 

= 7 ]C £ °™a< [$ml COS(^rn + V'*) + $ml COs(tpm ~ i>lj\       (2.62) 4 

where 

._±     _     UJffc^ ± CJmfe2 + (üJm ± ^)km • k; 
■J-        — 

"ffd It        IS. 
(2.63) 

,±    =        [1 ~ g8«(ft + fe2)](kTO • kQ ^ 
'™' o^l - jiaa*£][l - fakf] + 1 - n>aikl 

, M2^^ p2uf (9 „., 
* [1 - //W^Hl - /* W2] "•" 1 - ^aikf ^l 

The expression for T has exactly the same form as that obtained from 

Stokes theory by Dean and Sharma (1981), aside from differences in the evaluation 
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of wavenumbers from the true and the approximate linear dispersion relations. 

The expression for Q in (2.64) at the first glance is not in the same form as that 

from Stokes theory. However, after expanding the denominators, we have 

Ä = -[(km'kl) ± PW* + A4 + M + <V) (2.65) 

which is equivalent to the form obtained from Stokes theory after the neglect of 

0(fi4) terms. Notice that the level of approximation in the governing equations 

is of 0(fi2), the same as that in equation (2.65). 

From equations (2.61) and (2.62), we know that the wavenumber vectors 

and the frequencies for second order bound waves are the (vector) sum and (vector) 

difference of those for the first order free waves. After assuming the solution forms 

for the bound waves and work on some algebra derivation, we obtain the surface 

elevation as: 

V2 = « E E {a^i [Gti cos(^m + rj;,) + G-, cos(V>m - V>/)]} (2.66) 

where, on the right hand side, the first term represents the superharmonic com- 

ponent and the second term represents the subharmonic component. The corre- 

sponding coupling coefficients are given by 

where the parameters w*{, fcjjjj, and T^{ are defined as 

w; ml =   u>rn±ul (2.68) 

kml   =   |km±ki| (2.69) 

Tml     ~     kml t t1?x2 (2-70) 

Given any two of the primary wave components (i.e. specified frequencies 

um and a;/, and specified directions of km and k/), the corresponding superhar- 

monic and subharmonic coefficients G+ and G~ can be obtained from equation 
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(2.67) and related formulas. Nwogu (1994) demonstrated that the coefficients 

obtained from the extended Boussinesq equations agreed with the exact solution 

better than those from the standard Boussinesq equations. To show the impor- 

tance of the extra nonlinear terms in the fully nonlinear Boussinesq equations, 

we obtain the corresponding coefficients for the same wave conditions used by 

Nwogu (1994) and compare the results between different models. As shown in 

Figures 2.3, solid curves are the results obtained from the full Stokes theory by 

Dean and Sharma (1981), dashed curves from the extended Boussinesq model of 

Nwogu (1994), and dash-dot curves from the present theory with Q^ obtained 

from (2.64). The two primary wave components used for the calculation are dif- 

ferent in frequency by 10%, i.e. wi = 1.05w0 and u2 = 0.95u;o, where UJ0 is the 

reference center frequency. Two angles between these waves are used for the sam- 

ple calculation, which are A0 = 0° and A6 = 40°, respectively, as indicated by 

the upper and lower sets of curves. The horizontal axis is the ratio of water depth 

(h — 1) to lo, the deep water wavelength corresponding to the center frequency 

The superharmonic and subharmonic coefficients from both Nwogu's ex- 

tended Boussinesq model and the present theory give good agreements to those 

from Stokes theory over the range of specified deep water wavelength. However, 

the present model provides a more consistent approximation to the full theory 

except at large values of IQ
1
 (corresponding to deeper water depth), where the 

form of error in the Nwogu's theory leads to a fortuitously better prediction. If 

we used the expression (2.65) instead of (2.64) to obtain the value of Q*t, then 

the maximum error between the present theory and the full theory is on the order 

of 2% over the entire range. 

Figure 2.4 gives an alternate view for the comparisons of these coefficients 
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Figure 2.3: Comparisons for bound wave coupling coefficients:   (a) superhar- 
monic; and (b) subharmonics. Stokes theory ( ); Nwogu's theory 
( ); present theory ( ). The two primary waves are 10% dif- 
ference in frequency and at the angles of A0 = 0° (upper curves) 
and A0 = 40° (lower curves). 
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among different models, following the example plots by Madsen and S0rensen 

(1993). The frequencies of the primary wave components are varied over a wide 

range of values but their directions are the same (so that A0 = 0°). The ratios 

of G^ predicted from Nwogu's model and the present theory to that from Stokes 

theory are calculated and shown in contour plots. Again, results from the present 

theory are generally more accurate than those from Nwogu's model, except for 

large value of a?, where Nwogu's model leads to fortuitously better agreement. 

However, if the expression of Q*t in (2.65) is used instead of equation (2.64), a 

much better agreement is obtained between the present theory and Stokes theory, 

as shown in (e) and (/) of Figure 2.4. 

2.4    Evolution of a Slowly Varying Wave Train 

It is of great interest for applying nonlinear wave equations to examine 

the effect of third order nonlinear resonant interaction to a wave train with a 

narrow band of frequencies and wavelengths. Since Benjamin and Feir (1967) 

demonstrated that Stokes waves are unstable to periodic side-band disturbances, 

the nonlinear evolution of a wave train traveling over a long distance for a long 

time has been studying by a number of investigators, including Zakharov (1968), 

Benney and Roskes (1969), and Chu and Mei (1971). This nonlinear resonant 

property is best described by the corresponding evolution equation, whose form 

is the same as that of the cubic Schrödinger equation in quantum mechanics. For 

the original 3-D wave propagation problem governed by equations (2.6)- (2.9), 

Mei (1989) showed detailed derivation for obtaining the Schrödinger equation. 

In the following, we will derive the corresponding Schrödinger equation for the 

fully nonlinear Boussinesq equations and compare the model results with Mei's 

solutions. 
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Figure 2.4: Ratio of model predicted G± to value from Stokes theory. (a,c,e) 
— Superharmonics; (b,d,f) — Subharmonics. A0 = 0. (a,b) — 
Nwogu equation; (c,d) — Present theory; (e,f) — Present theory 
with modified Q. 
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For constant water depth, the fully nonlinear Boussinesq equations are 

reduced to equations (2.45) and (2.46). In order to derive the corresponding cubic 

Schrödinger equation, only terms to 0(S2) are useful. Thus equations (2.45) and 

(2.46) are further reduced to (<j) = (f>a) 

tit + vV + A*iV2(vV) 

+ SV ■ (r]V<f>) + Six2aV ■ [T/V(VV) 

62u2 

- -h 
T}   + (l>t + n2aV2<f>t 

+ S- (Vfla - SfaVfr + 8fi2aV<j> ■ V(V^) + 8-f (V^)2 

_ ^v
2V24>t-82tx2r)V<j>-V{V2<f>) + 62[i2r,(V2cl>)2 = 0        (2.72) 

r)2V{V2<f>)] = 0 (2.71) 

Differentiating equation (2.72) with respect to t and subtracting the resulting 

equation from equation (2.71), we have 

+   SV • (rjV<f>) - 8V<S> • V& + 6n2(VV2<j>t)t 

- 6fi2a{V</> • V(VV)t - 8p2V2<f>V2<f>t + 6p2aV ■ [J/V(V
2
^)] 

+ ^-fo'Vfc), + «V foW • v(W)]t - PflvWflt 

- ^VV • [T?
2
V(VV)3 = 0 (2.73) 

Assume the carrier wave of a wave train propagates in the x direction. To 

allow slow modulation, we introduce the following multiple scales for independent 

variables x, y and t 

x   = x   +6x   +62x   — x   +Xi   +X2 

y   = Sy   +S2y   = Y1   +Y2 (2.74) 

t  =t    +6t  +SH   =t    +Ti   +T2 
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where Xlr X2, Yx, Y2, li, and T2 are slow variables. The corresponding partial 

derivative operators are defined as 

()x   -(),   +6{)Xl   +PQXa 

0v   -> 6Q*   +62()y2 (2.75) 

0*   -0«    +S(hi   +^
2
()T2 

and so on for higher order and mixed derivatives. Equations (2.72) and (2.73) are 

then transformed into 

Li{<f>)   +   6L2(<f>) + 62L3(<t>) + 6M1(r)J) + 8Ni(<i)1<l>) 

+   S2M2(ri,<l>) + S2N2(<j>,<f>) + S2M3{r},<f>) = Q (2.76) 

r,   +   PI(4) + 6P2(</>) + 8Q(TI,<I>) + 6R{<I>,<I>) = 0 (2.77) 

where L\, L2, L3, Pi, and P2 are hnear operators which are denned as: 

LiQ   =   -0tt + 0xX-ß2ot0xxtt + fi
2a1()xxxx (2.78) 

L*Q   =   -2()tr1+2()jejfl-2/i
2a[()ttejra + 0,artri] + Va1()M:rJri (2.79) 

H)   =   -()r1r1-2()fl3l + [()Jr1x1+2()«Ta + ()yiy1] 

-foe [()Xlx1tt + 2{)xX2u + ()XXTITI + 2()xxtT2 + 4()xXl tTl + ()YlYlu] 

+H2a1 [4Qxxxx2 + GQzzX^ + 2()XXY1Y1] (2.80) 

M)   =   Ot + vMUt (2.81) 

P2O   -   (k+^aßO^ + OxxxJ (2.82) 

and Mi, JVi, M2, N2, M3, Q and R are nonlinear terms which are defined as 

Mi(rj,<t>)   =   (rt<f>x)x + p2(r]<f>xxt)t + iJ,2a(T}<t>xxx)x (2.83) 

Ni{<j>,<j>)   =   -<t>x<l>xt- ^a{(l>x<j)xxx)t- n2<j>xx(j>xxt (2.84) 

M2(ri,<f>) = Kvfetei + tnMx] 
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+(j?a \(r}faxx)x1 + ^{n4>xxXi )x] (2.85) 

N2((j>, fa)     =     —bx^xt - <f>x<f>Xit ~ fafati 

—fl2a [(<i)xAxxx)t + (fafaxx)^ + ^{fafaxX^ 

—fi   {^faXifaxt + ^faxfaXit + <f>xxfaxT1) (2.86) 

Main, fa = n2 \-(n2<i>xxt)t + (vfafaxx)t - {n4>lx)t - ^(n2faxx)x\ (2.87) 

Q(ri,<j>)   =   -n2n4>xxt (2.88) 
2 2 

#(<^)   =   Y^ + A^x^ + y^L (2-89) 

To obtain the evolution equation, we introduce the following perturbation 

expansions for the unknowns of <j> and 77 

<f>   =   <j>1 + 8fa + 82fa (2.90) 

r,   =   Vl + 6n2 + S% (2.91) 

where subscripts 1, 2, and 3 denote the first, the second, and the third order 

wave components, respectively. Substituting the above expansions into (2.76) 

and (2.77) yields 

Lx(fa)   +   8L1(fa) + 82L1(fa) + 8L2(fa) + 82L2(fa) + 82L3(fa) 

+ &Mi(ifc, fa) + s2Mx{nu fa) + 82M1(m, fa) 

+ 8N1(fa,fa) + 82N1(fa,fa) + 82N1(fa,fa) 

+ 82M2(m,fa) + 82N2(fa,fa) + 82M3(m,fa) = 0(83)     (2.92) 

»7i   + 8n2 + Pi{fa)+8Px{fa) + 8P2{fa) 

+ 8Q(m,fa) + 8R(fa,fa) = 0(82) (2.93) 

from which equations of 0(1), 0(8), and 0(82) are obtained. Due to the effect 

of nonlinear interaction, high order solutions must contain high order harmonics. 
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Therefore, the solution forms for different order of <f> and 77 are assumed to be 
771=71 

<f>n     =       £   <f>n,mEm (2.94) 
771=—71 

771=71 

»7»   =     E f».«^ (2-95) 

n = 1,2,3,... 

where n is the order number, m is the mode number, <f>njm and ^n)TO are functions 

of slow variables X1, X2, li, I2, ?i and T2 only. Terms with subscript (n,-m) 

are the complex conjugates of terms with subscript (n,ra). The quantity of E is 

a function of fast variables x and t and is defined as 

E = exp[i(x - w*)], t = yf-[ (2.96) 

where a; is the angular frequency of the wave train. Notice that x is a dimensionless 

variable which has been scaled by the inverse of the typical wavenumber k0 and 

the natural choice for &0 is k — the wavenumber of the wave train. 

In the following, we start from lowest order equations and seek solutions 

to equations of higher order. In the end, we will obtain the corresponding cubic 

Schrödinger equation which governs the long term evolution of a wave train. 

2.4.1    Solutions for 0(1) 

To 0(1), equations (2.92) and (2.93) reduces to 

H<f>i)   =   0 (2.97) 

m + Pi{<h.)   =   0 (2.98) 

Substituting equations (2.94) and (2.95) for n = 1 into (2.97) and (2.98) yields 

D1<j>1>1E + D1(l>1^lE-1   =   0     (2.99) 

nitE + ri^o + n^-iE^-iuill-a^ifaiE-fa-xE-1)   =   0   (2.100) 
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where 

A = u2[l - an2] - [1 - alfi
2] (2.101) 

Collecting terms with E: equation (2.99) becomes 

Dl(f>ltl = 0 (2.102) 

Notice that terms with E~x will also result in an equation. However, the equation 

is redundant since it is the complex conjugate of that with E. In the subsequent 

derivation, all complex conjugate equations will not be considered. 

Since the term <£i,i is not zero in general, equation (2.102) requires D\ = 0 

and results in 

^ = 1^4 (2.103) 
1 — a/r 

which is the linear dispersion relation for the fully nonlinear Boussinesq equations, 

the same as that from Nwogu's equations. 

To satisfy equation (2.100), we have 

iTi,!   =   tw(l - a/i2)^i,i (2.104) 

nifi   =   0 (2.105) 

Denoting 771,1 = A/2 (so that |A| is the amplitude of 771), equation (2.104) results 

in 

For convenience, the first order solutions are summarized here 

m = fe + Y-E"1 (2-107) 

*   =   "Ml-a^)(iA£~Ü>rl) + ^° (2-108) 

where A* is the conjugate gradient of A. The relation between the mean flow 

potential ^1,0 and A can not determined at this order. 
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2.4.2    Solutions for 0(8) 

To 0(6), equations (2.92) and (2.93) reduce to 

Li(fa) + L2(fa) + M1{ri1,fa) + N1(fa,fa)   =   0 (2.109) 

V2 + Pi(<f>2) + P2(4>i) + Q(r}n<f>i) + R(<f>u<t>i)   =   0 (2.110) 

Using the first order solutions, we first obtain solution of fa from equation 

(2.109) and then obtain solution of r\2 from (2.110). The two linear terms in 

(2.109) become 

Hfa)   =   D2fa,2E
2 + o.e. (2.111) 

L2(fa)   =   2M1~ali2)(fa,iT1 + Cgfa,1x1)E + c.c. (2.112) 

where c.c. denotes complex conjugate, D2 and Cg (the group velocity) are defined 

as 

D2   =   4a;2(l-4V)-4(l-4a1^) = -i^— (2.113) 
1 — a\il 

1 + a[i2u2 - 2a! u2 

In the above derivation, the linear dispersion relation (2.103) has been used. 

The two nonlinear terms in equation (2.109) are evaluated as 

MI(J/I, ^i)   =   (TJIMX + P2(r}i4>ixxt)t + H2a(ni(l>ixxx)x 

=   2(u2-l + afi
2)(Vhl<f>1AE

2 + T}h_l(t>1,_lE-2)      (2.115) 

Nl(fa, <f>l)     =     -faxfaxt - P2<x(faxfaxxx)t - fi2faxxfaxxt 

=   iu(-l + 2ali
2 + li

2)(cf>llE
2-<l>l_1E-2) (2.116) 

By substituting the expressions for Ly, L2, Mx, and Nx back into equation 

(2.109) and collecting for terms with E and E2, we have 

2iu(l-ap2)(fatlTl + CgfatlXl)   =   0 (2.117) 
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D2<f>2,2 - 2 (l - an2 - J2) r/1,1^1,: 

-tw [l - (1 + 2a)//2] <f>\A   =   0 (2.118) 

Terms with products of 7?i,m and fatm (m = —1,1) indicate nonlinear interaction 

between the first order waves, which determines the solution of fa^. Substituting 

solutions (2.107) and (2.108) of 771 and fa into equations (2.117) and (2.118) yields 

AX.IT,   =   -CgAi,1Xl (2.119) 

^ ~ -m^-TT (2J20) 

where <?2,2(A0 is a function of // which is defined as 

1 - (1 + 2a)fi2 + §(a2 + ai)fi 

1 — ay, Q2M = f—^T — (2-121) 

With the solution for fa^i we are now seeking solution for 7/2 from equation 

(2.110), which is rewritten here for convenience 

»72 + Pi(fa) + P2{fa) + Q(vu <h) + Ä(^i, fa) = 0 (2.122) 

Each term in the above equation is expanded as 

»72   =   V2,2E2 + V2,iE + ex. + 7/2,0 (2.123) 

Piifa)   =   -2iw(l - 4:afi2)fay2E
2 - tw(l - ap2)faylE + c.c.   (2.124) 

P2(fa)   =   [(l-afi2)fa,iTl+2[i2aufa,lXl}E + c.c. + fam     (2.125) 

Q(vi,<t>i)  = -v2vi<f>ixxt 

=   -i(i2üjr)ltl<f>hlE
2 + c.c. 

-iH2u{rii,-ifa,\ -171,1^1,-1) (2.126) 

R{<l>i, <f>i)   =   -^>\x + fJ>2ah2faxfaxxx + fi2-<f>lxx 

=   --(1 - 2a/i2 - fj,2)E2 + C.C. 

+{l-2afi
2+p2)fatlfat_1 (2.127) 
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By substituting the above expressions back into equations (2.122) and col- 

lecting terms with E°, E1 and E2, we have 

»72,0   + &,ozi - *>2w(i7i,_i^i,i - iji.i&.-i) 

+ (l-2a/j2 + ^lrl=0 (2.128) 

>72,i   - «w(l - a/x2)^2fl + (1 - an2)<j)lyXTl + 2fi
2au)<f>hlXl = 0    (2.129) 

772,2   - 2*w(l - 4a/j2)^2,2 - *A*2w>?i,i^i,i 

- ^(l-2^-/iXi = 0 (2.130) 

It is apparent that solutions 772,0 and 772,2 but not 772,1 depend on the nonlinear 

interaction of first order wave components. Substituting the expressions of ^1?1, 

r)i,i and ^»2,2 into the above equations gives 

|A|2 

172,0  =  -fam-ftflW-j- (2.131) 
2 

i?2,i   =   w(l - a/i2)^2,i + ^-i4Tl +      a/i      ^ (2.132) 
2a; (1 — an1) 

^■2   =   "g ~r- (2.133) 

where 

-r2,o(N   -   —f\ 1—2wi 2T" (1 - ax/i
2)(l - a/i2) 

(2.134) 

-r   / \ /1     *     2\/»   / \     /*2[1 - (2a + 3)/z2 + 2ax/j
4] 

^(AO   =   (l-4a/i2^2,2/i -^-L--^ -£ £Ll      2.135 
3(1 — ai/i2)(l — aß2) ' 

Figure 2.5 shows the comparisons of ^"2,0 and T2,2 between the present 

model and the analytical solution of Mei (1989). In shallow water range (/i < 1), 

both results are quite close and approach the same asymptotic values as \i —> 0. 

However, in intermediate and deep water where the values of fi increase, discrep- 

ancy between two solutions are quite large. For instance, the asymptotic value 

of ^2,0 for the analytical solution is zero as p approaches infinity. However, the 

corresponding asymptotic value for the present model is equal to 2/a = -5.13. 
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(a) 

^2,0 
-1  - 

-2 

Figure 2.5: Comparisons of nonlinear interaction coefficients T2$ and ^2,2 be- 
tween the present theory ( ) and the analytical solution ( ) of 
Mei (1989). 

2.4.3    Solutions for 0(62) 

To 0(<52), equation (2.92) reduces to 

+   iV1(^2,^1) + M2(7?1,^1) + iV2(^1,^1) + M3(7/i,^1) = 0 (2.136) 

The three linear terms in equation (2.136) are evaluated as 

Li(fo)   =   Dz<f>3ßE3 + D2fa,2E
2 + C.C. (2.137) 

L2{fa)   =   L2(<f>2t2E
2) + 2iu(l-afi

2)(<t>2,1Tl + Cg<f>2,ix1)E + c.c.   (2.138) 

£3(^1)   =   2t«(l - <x»2){<t>\,iT2 + C<Aix2 - -a;"<j>hlXlXl )E + c.c. 

-^l.oriT! + <f>i,ox1x1 + wCs(l - CLp2)fa.flYtfi (2.139) 
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where 

D3   =   9a;2(l-9^2)-9(l-9al//
2) = -^- (2.140) 

1 — aw* 

ÜJ = (2.141) 
1 + afi2u;2 — 3QI//

2 

u(l — afi2) 

The first and second nonlinear terms in (2.136) become 

■Mi (171, ^2)+ Afi (172,^1) 

=     {Vlhx + V2<kx)x + P2(yifaxxt + Tl2<h.xxt)t + ii2Oi{r}\(l>2xxx + V2(f>lxxx)x 

=   -(1 - afi2 - ü;
2

)(7?2,O<£I,I - 772,1^1,-1)^ 

-2(1 - 4a/x2 - Au^.^E + T{E±Z, E±2, E~x) (2.142) 

where T{E±3,E±2,E-*) represents terms with E±3, E±2 and E'1, which are 

not needed for obtaining the cubic Schrödinger equation. The third and fourth 

nonlinear terms in (2.136) become 

=     -{<!>lx<f>2x)t - fi a{4>lx<f>2xxx + <j>2x<j>lxxx)t ~ P? {<f>lxx4>2xx)t 

=   2iw(l - 5a//2 + 4//2)^1,_1^2,2£ + T(E±3, E±2, E"1) (2.143) 

The last three nonlinear terms in (2.136) become 

M2(r)i,<f>i)   =   V2w(i7i,_i^i,i - 171,1^1 -i)Tl 

-ia(l - a//2)(77i-i^i,! - r/i.i^i-i)^ 

+iVi,i<f>i,ox,E + T(£±2, E-1) (2.144) 

JV2(&,&)   =   -(l + //2_2a//2)(^>1^lt_1)Tl 

-w(l - afi2)<j>hl<f>lfiXlE + T(£±2, E-1) 
1 

'2' 
M3(r/i, fa)   =   ~^2(1 - a;2)(27/1>_1<^lil - rn,i<i>i,-i)Vi,iE 

-4frh,i<fn,i<l>i,-iE + T(£±2, E-1) (2.145) 
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Substituting all the above terms into equation (2.136) and collecting terms 

with E: we have 

2tw(l - a/i2)(^2,in + Ca<f>2,ixi) 

+   2*w(l - a^2)(^i,iT2 + Cg<ßi,ix2 ~ ■^"<kix1x1) 

- 2(l-4a/x2-4a;2)7?i,_1^2>2 

- (1 - a/i2 - w2)(r)2,o<f>i,i - 172,2^1,-1) 

4-   2ia;(l + 2/i2 — haii2)<l>\-\<l>2,2 

- -(1 - w2)(2?71-i^i,! - 771,1^1-1)771,1 

+   *>7i,i^i,oXi _ ^C1 ~ a/*2)^i,i^i,oXi = 0 (2.146) 

Substituting solution forms of 771, 772, <j>\ and ^2,2, equation (2.146) becomes 

AT2   +   C3Ax2 - -u/'Ax-j*! 

+   jf^\A\2A-^)^oTA + itiMA = 0       (2.147) 

where Vi(fi) is the coefficient representing nonlinear interaction between wave 

components r/1)7n, r?2,m5 <£i,m, and <j>2,m {m = —1,0,1,2), and T-^T-O is related 

to the nonlinear interaction between a wave component (r/i, <^i) and a current 

component (^i,o)- These two coefficients are defined as 

[3^2,2(7i)-27i2^2,o(/i)] [1 - (1 + 2a)/i2 + (a2 + ai)//4] + 8/J
4
 + fi6 

T>M   = (l-a^Xl-a^2) 
6g2,2(/x) [!-(! + 5a)7i2 + 2(a2 + a1)fi

4} 
1 - ax/i

2 (2.148) 

*M   -   l-{l + ^:£ + "^ (2.H9, 
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Now we should obtain the relation between <f>ii0 and A so that equation 

(2.147) has only one unknown A. To do that, we first collect terms with E° in 

equation (2.136), which results in 

- ^I.OTIT! + <f>i,ox1x1 + uCg(l — afj, )<I>I,OY1Y1 

+     t(l - Q^2)(7/i)_i<^iti - T?!,!^!,-!)*! + tfi2w(?7i,_i^i,i - 7/i,i<^i _i)Tl 

- (1 + fji2 - 2a/z2)(^1,_1)r1 = 0 (2.150) 

Substituting the solution forms of rji and <f>\ yields 

= sm{w)xrs<m{lAp)n     (,151) 

where 

QM ~ {rr^) '   QM ~ (1-^)2—      <2-152) 

To obtain relation between <j>ii0 and A, we assume that 0^ = 0, which 

implies there is no slow variation in the y direction. We also introduce a new set 

of coordinates as 

t = X1-C,T1 = ±(x*-c»T*)> r = 8Tx = T2 (2.153) 

which gives 

(k = -Cg()t + 0(8), 0* = Ot (2.154) 

Or, = Or - f(h ()* = \o* (2.155) 

(hu = c?o« + 00), OXiX!   =   ()« (2.156) 

Then equation (2.151) becomes 

, u>[2u>Qt(ß) + C,Q2(ii)],    2, <nm    2(  _ r„ [\A\ )  + 0(8) (2.157) V(l - CJ) 
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which is integrated once with respect to £ and becomes 

&,oe = Mr) _ g   |A|  +0(6) (2.158) 

Substituting (2.158) into (2.146) and using new coordinates, we obtain a 

nonlinear cubic equation with a single variable A as: 

- iAr - Y^tt + ß\A\2A + lA = 0 (2.159) 

where 

ß   =   ßi + ß2 (2.160) 

16w   fi2 A  =  TTT^ (2-161) 

ß2 = "v T^cl         (2-162) 

7   =   ^[2u> + CaV2(ß)} (2.163) 

The last term in equation (2.159) can be eliminated by introducing 

A = Bexp (-i j<ydr\ (2.164) 

which results in the classic nonlinear cubic Schrödinger equation 

a 
u 

- iBT - =-% + ß\B\2B = 0 (2.165) 

Though the form of equation (2.165) is exactly the same as that of Mei 

(1989), the expressions of w and ß are different. The variations of u and ß 

with n from fi = 0 (shallow water limit) to \i = 5 (very deep water) are shown in 

Figures 2.6(a) and 2.7(6). The ratios of the present model results to the analytical 

solutions are also shown in the accompanying plots (6) in the same figures. For 

small values of //, both the analytical solutions and the present model results 
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Figure 2.6: Comparisons of J' between the analytical solution ( ) and present 
model results ( ): (a) actual values; and (b) the ratio of model 
result to analytical solution. 

compare quite well. However, the differences between the two models increase as 

the water depth becomes deeper. 

As demonstrated by Mei (1989) from the derived cubic Schrödinger equa- 

tion, the sign of the product for u and ß is essential to the stability of uniform 

Stokes waves. From the analytical solutions, the values of u>" are always nega- 

tive. However, the value of ß changes sign from negative to positive at around 

(i = 1.36, which is the critical value for the product u"ß to change sign from 

positive to negative. Therefore, Stokes waves in the range of y, < 1.36 are always 

stable. For the range of \i > 1.36, however, the side-band disturbance of certain 

frequencies can increase exponentially with time and hence the the corresponding 

Stokes waves are unstable. 
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Figure 2.7: Comparisons of ß between analyiical solution ( ) and present 
model results ( ): (a) actual values; and (b) the ratio of model 
result to analytical solution. 

As for the present model, the value of J' is negative from \i = 0 to about 

fi = 3.7 then becomes positive for the rest of water depth. The value of ß, on the 

other hand, change sign from negative to positive around ft — 1.57. Therefore, 

the values for the product of iv ß are positive in two ranges, one is from fi = 0 

to fi = 1.57 and the other is from /z = 3.7 to fi = 5. In the remaining range 

of \i — 1.57 to n — 3.7, the product of u ß is negative. Using the present 

model, the stability range for Stokes waves will be within p < 1.57, a reasonable 

approximation to the analytical value of \i — 1.36. Due to the opposite signs of 

(jj for // > 3.7 between the present model and the exact solution, we should not 

conclude that Stokes waves are stable in this range. 

The value of ß is the sum of two parts, i.e., ßi and ß2. The first part ß\ 
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is related to the interaction between wave components, while the second part ß2 

is related to the interaction of wave and current components. Figures 2.8 and 2.9 

show the comparisons of these two coefficients between analytical solutions and 

the results from the present model. The variation of ßx from the present model 

follows the exact solution closely for small value of \i and then start to deviate in 

the intermediate water depth where /z > 2. The relative error between the present 

model and the exact solution can be as large as 40%. The variation of ß2, on the 

other hand, compares quite well with the exact solution for the whole range of 

fi. The reason for these different behaviors for ßi and ß2 comparing with exact 

solution is not known at the present and should be pursued for future study. 
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Figure 2.8: Comparisons of ft between analytical solution ( ) and present 
model results ( ): (a) actual values; and (b) the ratio of model 
result to analytical solution. 

From the above derivation of the cubic Schrödinger equation, it is apparent 
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Figure 2.9: Comparisons of ß% between analytical solution ( ) and present 
model results ( ):  (a) actual values; and (b) the ratio of model 
result to analytical solution. 

that the nonlinear properties from the fully nonlinear Boussinesq equations do 

not agree well with the analytical solution in intermediate water depth (fi = 2 ~ 

5), despite the fact that the corresponding linear dispersion property has been 

improved significantly over the same range of \i values. Nevertheless, the present 

model is still quite accurate for predicting nonlinear properties in shallow water 

areas. For most cases of wave propagation in coastal regions, large nonlinear 

interaction usually takes place in surf zones where wave breaking takes place and 

where the water depth is quite small. The fully nonlinear Boussinesq equations 

thus are valid for describing the shoaling of weakly nonlinear waves in intermediate 

water depth and the propagation of strong nonlinear waves in surf zones where 

wave breaking dominates. 
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The reason for the poor comparison of nonlinear properties between the 

present model and the exact solution may be due to the approximation for the 

velocity field used in the present model, which is only accurate to 0(fi2). Following 

a similar approach of using velocity potentials at different depth as dependent 

variables and keeping terms up to 0(//4), Gobbi and Kirby (1996) derived a new 

set of fully nonlinear Boussinesq equations with fourth order dispersion. The 

resulting nonlinear properties are better than those of the present model compared 

with the exact solutions. 

57 



Chapter 3 

NUMERICAL MODEL 

3.1    Introduction 

The fully nonlinear Boussinesq equations derived in the previous Chapter 

are coupled hyperbolic partial differential equations which involve three variables 

(surface elevation TJ, horizontal velocities u and v) and derivatives with respect to 

x, y and t up to third-order. No analytical methods have been developed so far to 

solve the equations for real coastal engineering applications. Instead, numerical 

models are developed to obtain the approximate solutions to wave propagation 

problems. Due to the wide variety of schemes available to discretize the equations, 

a number of different numerical models have been developed by investigators over 

the past three decades since digital computers became available for computation. 

For the Boussinesq equation system, finite-differencing of the first order 

derivative terms to second-order accuracy leads to leading order truncation error 

terms whose forms are mathematically the same as those of dispersive terms ap- 

pearing in the model equations. These terms are eliminated consistently in the 

limit as Az, Ay, At —»• 0, but usually are large enough in magnitude to interfere 

with the solution at typical grid resolutions. The characteristics of any Boussinesq 

models are defined by the accuracy for discretizing the first order terms and by 

the treatment to the truncation errors.  In the following, a brief description for 
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selected Boussinesq models is given, with emphasis on the discretization methods 

and the truncation errors. 

Peregrine (1967) employed a numerical method to solve the standard Boussi- 

nesq equations for simulating wave propagation in 1-D horizontal space. Solitary 

wave shoaling and reflection over a constant slope were studied by a simple second- 

order finite difference scheme, which is forward in time and center in space, plus 

one extra corrector for solving the the continuity equation to obtain the surface 

elevation r). Since truncation errors have the same forms as those of the dispersive 

terms (third-order derivatives), small time step At and small grid size Ax had to 

be used in order to obtain accurate results. At each time step, a system of tridi- 

agonal element equations were solved to obtain velocity u from the momentum 

equation. The use of tridiagonal matrix is typical for Boussinesq models since it 

stabilizes the numerical scheme yet does not affect solution speed. 

Abbott et al. (1973) developed a more complicated numerical model (the 

SYSTEM 21) for Boussinesq equations whose momentum variable is, instead of 

depth-averaged velocity, the mass flux. Since its development, this model has 

been under constant modifications by McCowan (1978, 1981) and by Abbott et 

al. (1981, 1984). In this approach, the differential equations are discretized by 

using a time-centered implicit scheme with variables defined on a space-staggered 

rectangular grid. Though the finite difference scheme used in the model is only 

second order, the final overall scheme is third-order accurate due to the use of 

some special techniques, including the back-substitution of truncation errors for 

some specific terms. The mass flux variables at a new time step are obtained by 

solving a system of tridiagonal matrix equations, which is similar to that used 

by Peregrine (1967). The latest version of this model was used by Madsen et 

al. (1991, 1992) to solve the newly derived extended Boussinesq equations whose 
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linear dispersion property is improved in the intermediate water depth. 

Another scheme to solve the standard Boussinesq equations was developed 

by Rygg (1988). In this method, the governing equations were rearranged so that 

velocity derivatives with respect to time become two additional variables. A stag- 

gered Arakawa-C grid is used for spatial derivatives and a second order predictor- 

corrector scheme is used for time stepping. The use of an implicit method of 

solving for the velocity derivatives by tridiagonal matrix is essential for the stabil- 

ity of the scheme. Since only second order schemes are employed to discretize the 

first order derivative terms, the resulting truncation errors have the same form as 

the dispersive terms in the equations. In order to obtain meaningful results from 

the model, small values of grid size and time step must be used. 

Mooiman (1990) developed a numerical model for the Boussinesq equa- 

tions which were derived as canonical equations for an approximate Hamiltonian 

for water wave motion. The fourth-order Runge-Kutta method is used for time 

stepping. For spatial derivatives, first order terms are discretized by a fourth 

order finite difference scheme while second or higher order terms are discretized 

by a second order finite difference scheme. With the combination of the fourth 

and second order schemes, the forms of truncation errors will not be the same 

as those of dispersive terms in the equations. Therefore, there is no need for 

back-substitution of truncation errors for typical grid resolutions. A system of 

space-staggered rectangular grids is employed for discretizing spatial derivatives 

for all variables and the velocity components are obtained by solving tridiagonal 

matrix equations resulted from the momentum equations. 

Nwogu (1993) used an iterative Crank-Nicolson scheme for discretizing the 

extended weakly-nonlinear Boussinesq equations described in the previous Chap- 

ter.  The original Crank-Nicolson scheme, which is accurate to second order for 
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discretizing the first order temporal and spatial derivatives, was used in the pre- 

dictor stage to obtain the predicting values at the new time step. With these 

predicting quantities, the estimate of the lowest order truncation errors resulted 

from the second order scheme are obtained and substituted back into the equa- 

tions in the corrector stage. The use of back-substitution makes the overall scheme 

developed by Nwogu (1993) to be accurate to third order. 

3.2    Finite Difference Scheme 

In this study, we seek to reduce all differencing errors to a size that is 

small relative to all retained terms in the model equations. We therefore adopt 

a scheme where the spatial differencing in first order terms is done to fourth- 

order accuracy, leading to a truncation error of 0(AX
4
//J,

2
) relative to the model 

dispersive terms at 0(/z2). In contrast, the dispersive terms themselves are finite- 

differenced only to second-order accuracy, leading to errors of 0(Ax2) relative to 

the actual dispersive terms. Finally, the system of equations is written in a form 

that makes the application of a higher-order time-stepping procedure convenient. 

We utilize a fourth-order Adams-Bashforth-Moulton (Press et a/., 1992) predictor- 

corrector scheme to perform this updating. 

It is convenient to use dimensional variables for the development and the 

application of the numerical model. Therefore, from now on, all the variables 

used in the model will have their usual dimensions. In order for the model to 

be capable of simulating wave propagation for real applications, additional terms 

are needed for the model equations. These terms account for the generation of 

waves by source function inside the domain, the energy dissipation due to the use 

of sponge layers, due to the process of wave breaking, and due to the existence 

of bottom friction. Each of these additional term will be described in details in 
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later sections of this Chapter. After adding these terms, the dimensional model 

equations based on (2.39) and (2.40) are rearranged as 

rit   =   E(r},u,v) + q/E2{rj,u,v) + f(x,y,t) (3.1) 

[U{u)]t   =   F{r]iu,v) + [F1{v)]t + 'r[F2{ri,u,v) + Ft{ri,ut,vt)] 

+FbT + Fb + Fsp (3.2) 

[V(v)]t   =   G(r1,u,v) + [G1(u)]t + 7[G2(rj,u:v) + Gt(rJ,ut,vt)] 

+Gbr + Gb + Gsp (3-3) 

where r} is the surface elevation, u and v are the horizontal velocities at depth 

z = za in x and y directions, respectively, subscript t denotes partial derivative 

with respect to time t, 7 is a control parameter allowing us to choose the model 

to be fully nonlinear (7 = 1) or weakly nonlinear (7 = 0). The quantities U, V, 

E, F, Fi, G and G\ are functions of 77, u, and v and are defined as 

U   =   u + h [bihuxx + b2(hu)xx] (3.4) 

V   =   v + h [hhvyy + b2(hv)yy] (3-5) 

E   =   -[(h + ri)u]x-[{h + T))v}y 

- {aiÄ3(uxa; + vxy) + a2h
2[(hu)xx + (hv)xy]j 

- |a1Ä3(u!Cy + vyy) + a2h
2[(hu)xy + (hv)yy]j (3.6) 

F = -9VX ~ (uux + vuy) (3.7) 

G   =   -grjy - (uvx + vvy) (3.8) 

Fx   =   -h[bihvxy + b2(hv)Xy] (3.9) 

Gi   =   -hlhhu^ + biihu)^] (3.10) 

The quantities E2, F2, G2, F
t and G* are high order dispersive terms which are 

defined as 

E2   =   - {\aih2ri +-r)(h2 - T]2)  {uxx + vxy)} 
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- I mhrj - -Tj(h + Tf)  [(hu)xx + (hv)xy]> 

- I |a!/i277 + -rj(h2 - rf)  (uxy + vyy)j 

- I |a2/i7? - -7}(h + 77)  [(hu)xy + (hv)yy]j 

F2   =   - Yzi2«2 - V2)[uiux + vy)x + v{ux + vy)y]> 

- {(*<* ~ *?) ["[(^)i + {hv)y]x + v[(hu)x + (hv)^ } 

~2 {Pu)* + (Äv)» + -q(ux + Uj,)]2}^ 

G2   =   - \-z{za
2 - rj2)[u(ux + vy)x + v(ux + vy)y]> 

-   \(Za   -   ?/) [«[(A«),   +   (kv)y]x  +   V[(hu)X   +   (hv)y]y] } 

~2 {Pu)* + (hv)y + '/fa* + vv)]2}y 

(3.11) 

(3.12) 

2 
-1 

F*   =   {^[(«O-+ (»«)»] + * 

[h(ut)]x + [h(vt))y]}y 

(3.13) 

(3.14) 

(3.15) 

The quantity /(a;, y, £) is the source function term for generating waves inside the 

computing domain and will be described in detail in Section 3.4. The quantities 

Ffr and Gbr are terms related to wave breaking in x and y directions, respectively, 

which will be described in Section 4.2; Fb and G& are terms due to bottom friction, 

which are important for the simulation of wave runup and will be described in Sec- 

tion 4.3; F„p and Gsp are terms due to the existence of sponge layer, which is used 

for absorbing boundary conditions and will be described in detail in Section 3.3.2. 

The constants ai, a2, &i, &2 are used here for the convenience of comparing 

four different model equations for the same numerical scheme. For the fully non- 

linear Boussinesq equations and extended Boussinesq equations of Nwogu (1993), 

these constants are defined as: 

ai = \ß2~h   a2=ß+h   h = \ß2'   h=ß     (3-16) 
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where ß — za/h = —0.531 is a dimensionless parameter related to the reference 

water depth za at which the horizontal velocity is chosen as a dependent variable. 

Using the constants defined in (3.16) and setting 7 = 1 in equations (3.2) and (3.3) 

will result in the fully nonlinear Boussinesq model, while the extended Boussinesq 

model of Nwogu (1993) can be recovered by setting 7 = 0. In order for the model 

to be equivalent to the standard Boussinesq model derived by Peregrine (1967), 

the velocity variables u and v in equations (3.1)-(3.3) must be first replaced by the 

depth-averaged velocity variables ü and v. Then the corresponding parameters 

must be defined as: 

7 = 0,      Ol = 0,      a2 = 0,      &! = -,      &2 = ~2 (3-17) 

Finally, the nonlinear shallow water model can be obtained by using the depth- 

averaged velocity and by setting 

*y = ai = a2 = 61 = b2 = 0 (3.18) 

3.2.1    Time-differencing 

The arrangement of cross-differentiated and nonlinear time derivative terms 

on the right hand sides of equations (3.2)-(3.3) makes the resulting set of left-hand 

sides purely tridiagonal. This technique has been employed in all the existing 

Boussinesq models to stabilize the scheme. The governing equations are finite- 

differenced on a centered grid in x = (i — l)Ax, y = (j — l)Ayy, and t = (re — l)At, 

where i and j are indices for spatial grids in x and y direction and n is the index 

for time step. Level (n + 1) refers to the new time step at which values of 77, 

u and v are to be obtained. Level (n) refers to the present time step at which 

information is known. Level (n — 1) and (n — 2) are the past time steps at which 

all the values of 7/, u and v are also known. With the known information at the 

three time levels (n), (n — 1) and (n — 2), we obtain the corresponding values 
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in the new time level (n + 1) by using the third order explicit Adams-Bashforth 

predictor scheme, which is given by 

€"=<;   +   % [23TO - 16TC"1 + W)l?] (3.19) 

+   ^ [23(F„))?j - lG^«)^1 + 5(*i*)£2] (3.20) 

K-r = ^   +   ^ [23(G% - 16(G')^ + 5(G%f 

+   ^[nGu)lJ-ie(Glt)lJ
1 + 5(Glt)lf] (3.21) 

where 

£'   =   E + 7E2 + f(x,y,t) (3.22) 

F'   =   F + 7(F2 + Ff) + i^ + Ffc + Fsp (3.23) 

G'  =   G + 7(G2 + C?*) + G6P + C?6 + GV (3.24) 

The reason for separating (Fi)t and (Gi)t in the right hand sides of equations 

(3.20) and (3.21) will be explained shortly. All information on the right hand 

sides of (3.19)-(3.21) is known from the previous calculations. The values of rjff1 

axe straightforward to obtain from the expression. The evaluation of horizontal 

velocities at the new time level, however, requires simultaneous solution of tridiag- 

onal matrix systems which are linear in the unknowns at level (n +1). The classic 

Double Sweep Algorithm is used here to solve horizontal velocities. For any given 

grid index j in y direction, the unknown values of u^{i = 1,2,..., M) are obtained 

through the solution of a tridiagonal matrix. Similarly, vfflü = 1,2,..., N) could 

be obtained. The matrices involved are constant in time and may be pre-factored, 

inverted and stored for use at each time step. 

After the predicted values of {77, u, u}"*1 are evaluated, we obtain the cor- 

responding quantities of Ffa and G\j at all four time levels (n + 1), (n), (n — 1), 
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»«+1 = »?. + 
24 

+ 
At 
24 

+ A* 
24 

y.n.+1 = y.n. + 
Ai 
24 
At 

(n — 2). We only need to compute the corresponding values of the remaining 

quantities in {E', F', G'}ij at time step (n + 1). Then we apply the fourth-order 

Adams-Moulton method to compute {??,u, v} at time level (n + 1): 

At r9(^)"f + 19(^)?j " 5TO1 + W]        (3-25) 

gcmj1 + i9(*%- - 5(F)?;1 + (F')tf 

'Wit)*1 + Wj - S^u)^1 + (FU)?J: 

.W1 + 19(G% - 5(G,)S71 + (G')^ 

»(GiOS"1 + 19(Gi*)?j ~ SfGWS1 + (G»)J721 (3.27) + 24 

(3.26) 

From the arrangement of the model equations, we see that there are some time 

derivative terms on the right hand side (i.e. ut, vt, Flt and Git). For convenience, 

we define the quantity w as 

w = {u,v,FuGi} (3.28) 

The corresponding time derivative wt is evaluated from the known values of w at 

various time steps. For the predictor stage, we have 

(3.29) 

(3.30) 

(3.31) 

{VH)* = 2^13^'"4^7l+<n+0{A<2) 

{Wt)
^   =   2Ä7 [<■ ~ <81 + °(A*2) 

-1 
W =  2Ä7[3^r2"4^1+<]+0(Af2) 

For the corrector stage, Wt at four time steps are evaluated according to 

W^   =   ^ l1^1 " !Ki + KJ1 " Kf] + 0(At3) (3.32) 

W&   =   ^Nr+3<i-6<71+<72]+°(Ai3) (3-33) 
M^   =   ä^ + KT'-Ki + ^l+OCA*8) (3.34) 

W   =   ^[11<72-18<71+9<i-2<;1]+0(At3) (3.35) 
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Although the values of w at three time levels (n), (n — 1) and (n — 2) for the 

same corrector stage remain unchanged, the corresponding time derivatives wt at 

these time levels are related to the new corrected values of w at the time level 

(n + 1). Therefore, the quantities Ft and G\ which contain nonlinear products 

involving ut and vt, have to be updated for all four time steps during each cor- 

rector computation. However, that is not the case for quantities Fu and G\t. By 

substituting (3.29)-(3.31) into (3.20)-(3.21), the predictor scheme for momentum 

equations reduced to 

v&^vti + ^ [»TO - i6(n- j1+s(n- f 
+   2(F1)^.-3(F1)^

1 + (JF1)i:72 (3.36) 

^J+1 = ^   +   ^ [23(C)?,,. - 16(C)- J1 + 5(G%-a; 

+   2(G1)lJ-3(G1)tJ
1 + (G1)U

2 (3.37) 

By substituting (3.32)-(3.35) into (3.26)-(3.27), the corrector scheme for momen- 

tum equations reduce to 

off1 = 0y + |£ [»TO1+i9(n?j - scnsr1+ins2] 
+   (F1)lf

1-(F1)lJ (3.38) 

K?1 = K^   +   f£ [HG')?}1 + 19(C)?,,. - S(C)^1 + (G')l?} 

+   (Gi)Sj1 ~ (Gi)L- (3-39) 

Therefore, it is not necessary to compute time derivatives for quantities F\ and 

G\. We only need to update the values of F\ and G\ at the time level (n + 1) for 

corrector stage. 
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3.2.2    Space-differencing 

The model equations (3.1)-(3.3) involve first and higher order spatial deriva- 

tive terms with respect to x and y. To accomplish the goal of eliminating trunca- 

tion errors which have the same mathematical forms as those of dispersive terms 

in the equations, a standard five-point difference scheme is used to discretize the 

first order derivative terms, while a three-point scheme is used for second or higher 

order derivative terms. Specifically, for any given grid index j (j — 1,2, - • -, N) in 

y direction, the five-point finite difference scheme in x direction with truncation 

error of order 0(Ax4) is given by 

(wx)i,j   =   Y^^ (-25toij + 4:8w2,j - 36w3j + 16u74j - 3u»Sj)        (3.40) 

K)ij   =   ^2^ [8(^"+i.i ~ ^»'-Li) ~ K+2J - ^-2j)] (3.42) 

(i = 3,4,---,M-2) 

(WX)MUJ   =   jrj^; (3wM,j + 10wMl,j - l8wMz,j + 6WM3,J - wMi,j)     (3.43) 

(WX)M,J   =   j^^(25wM,j-^SwMl,j + S6wM2,j -16U7JW3J + 3UJM4,J)(3.44) 

where Mk = M — k (k = 1,2,3,4). The three-point difference scheme for second 

order derivatives with truncation error of order 0(Ax2) is 

(wxx)i,j   =   y^{2wld-5w2tj + 4:w3j-w4ij) (3.45) 

(wxx)i,j   =   T^Tj K-+U - 2u7,-j- + Wi-u) (3.46) 

(i = 2,3,---,Mi) 

{WXX)M,J    =    T^y(2wM,j-5wMl,j + ^WM2,j-WM3j) (3.47) 

The corresponding finite-difference schemes in y direction are similar to those in 

x direction and thus are not listed here. 
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The finite-difference scheme for the mixed derivatives in x and y with trun- 

cation error to second order 0(Ax2, Ay2, Ax Ay) is given by 

(U>*»)l,l     =     ^^~ [9^1,1 + 16tü2,2 + 1^3,3 - 12(^1,2 + lü2,l) 

+3(toi,3 + tö3,i) - 4(u>2,3 + 103,2)] (3.48) 

for corner points, and 

(w*v)ij   =   4AxAy [-3(wij+i - tou-i) + 4{w2j+i - w2j-i) 

-Ki+i-«3,i-i)] (3.49) 

(i = 2,3,-..,iV-l) 

(3.50) 

for boundary points, and 

{Wxy)i,j    =     |A-^A-K+lJ+l + ^i-l,i-l-^-lJ+l-lüt+l,i-l) (3-51) 

(i = 2,3,---,M-l;i = 2,3,---,iV-l) 

for interior points.   The corresponding expressions for other corner points and 

boundary points are similar to the above expressions and thus are not listed here. 

3.2.3    Linear stability analysis 

As described in previous sections, the numerical scheme to discretize the 

fully nonlinear Boussinesq equations is quite complex. To gain some insight into 

the model, we apply the method of von Neumann to perform linear stability 

analysis for the model, for the case of constant water depth and one dimensional 

flow only. 
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The linearized version of the fully nonlinear Boussinesq equations or the 

extended Boussinesq equations of Nwogu are exactly the same. For the case of 

1-D flow and constant water depth, these equations are reduced to 

r]t   =   E = —hux — CLihzuxxx (3.52) 

Ut   =   F = -gr}x (3.53) 

where 

U   =   u + ah2uxx (3.54) 

oi   =   a+ 1/3 (3.55) 

Notice that due to the differences in formulation, the stability ranges for the 

predictor scheme alone and for the corrector scheme alone are not the same. The 

stability range also varies according to the number of corrector scheme used for 

each time step. During our model computation, the number of corrector scheme 

used for each time step is not constant but depended on the iteration error and 

the chosen criterion. For simplicity, we only perform the stability analysis for the 

most common case in the model computation, which corresponds to using one 

predictor and one corrector for each time step. For the predictor scheme, the 

corresponding expressions for discretizing equations (3.52) and (3.53) are 

j^1)* = n] + ^[2ZEJ - 1QEJ-1 + 5EJ-2] (3.56) 

UJn+1)* = U? + ~[23F^ - 16FJ1-1 + 5F?-2] (3.57) 

where the superscript (n + 1)* is the newly-obtained predictor value, (n), (n — 1), 

and (n — 2) are three time steps at which the values of rj and u are known. At 

any spatial and temporal coordinates (x = (j — l)Ax and t = (n — I)At), we can 

write rj and u by their Fourier components as: 

rf-   =   Ti0exp[i(kjAx-unAt)] (3.58) 

u"   =   u0exp[i(kjAx-umAt)] (3.59) 
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where i = •y/—1 is the unit imaginary number, k and u are the corresponding 

wavenumber and angular frequency. From definitions (3.58) and (3.59), we have 

U? 

(«*)" 

u? + ah2-??1 3- 3— 
Ax2 

4ah2  . 2/kAx 
Tsm ( «i 

(Ax)3 

Then equations (3.56) and (3.57) become 

1 —-Ö- sin2(———) 
Ax2        v   2   ' 

8(u?+1-uU)-(ul+2-uU) 
12Ax 

isin^Ax), 
3Ä~x 

isin(fcAx) 
3Ax 

K+2-^_2)-2(^+1-u^_1) 
2Ax3 

4isin(fcAx)  . ,.&Ax.   „ 
 —-sm2(—-)«7 

[4 - cos(£Ax)]u" 

[4 - cos(fcAx)]??? 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(n+i).   =   ^ + A6pu]-32pu]-1 + 10Im]-2 

1i 

u? + 46917? " 3297?;-1 + 10^ 71-2 

(3.64) 

(3.65) 

where 

P 

9 

ihAt 
"24Ax 

sin(fcAx) 
4 — cos(fcAx)     4aiA2  . ,.fcAx ' 
  sm (-7T-) Ax* 

sin(fcAx) 

r   =   1- 

24Ax 

4aA2 

4 — cos(fcAx) -1 

Ax2 sm2(-r-) 

(3.66) 

(3.67) 

(3.68) 

The corrector scheme for equations (3.52) and (3.53) is 

V?+1 
At 

Vj + ^T[9£J"
+1)

* + 19£,n - 5E--1 + ET2\ 24 
A*, 

U?+1 = Ü7 + ör[9i7B+1)* + 19F; - 5F/"1 + Ff~2} 
24 

(3.69) 

(3.70) 
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where the superscript (n + 1) refers to the newly-obtained corrector value, and 

(n + 1)* is the predictor or the previous corrector value. Employing the same 

definitions as those in the predictor stage, i.e., expressions (3.58)-(3.59) and (3.66)- 

(3.68), then equations (3.69) and (3.70) become 

TJJ
+1

   =   7?; + 9^n+1)* + 19^n-5^-1+^-2 (3.71) 

u]+1    =   u] + 9qrj(
n+1> + 19qrjJ-5qr)]-1 + qri]-2 (3.72) 

Since only one corrector stage for each time step is considered here, the 

corresponding scheme is equivalent to the direct substitution of {u, 7/}(n+1)* from 

(3.64) and (3.65) into equations (3.71) and (3.72), which results in 

rfj+1   =   r1T}] + r2r!n-1+r3Tin-2 + 28pu]-5pu]-1+pu]-2        (3.73) 

u"+1   =   r1u] + r2u
n-1 + r3un„2 + 28qriJ-5qr)]-1+qT1]-2        (3.74) 

where 

n = l+414pg, r2 = -288pq, r3 = 90pq (3.75) 

We follow the method employed by Twizell (1984) to determine the stability range 

for the multiple time step scheme. First, equations (3.73) and (3.74) are combined 

into a single matrix equation as 

Zn+1 = AZn (3.76) 

where Zn+1 and Zn are six element vectors which are defined as 

Zn+1   =   {V
n+1,un+\T1

n,un,r)n-\un-1}T (3.77) 

Zn   =   {t1
n,un,V

n-l,un-\rj
n-2,un-2}T (3.78) 
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and A is the amplification matrix which is defined as 

A   = 

(rx 28p r2 —hp ^3 P\ 

28q ri -hq T2 q r3 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

{ o 0 0 1 0 0/ 

(3.79) 

With the definition of A, we then can determine the stability range by the 

condition that the magnitudes of all the six eigenvalues of A should not be 

greater than 1. For any given values of p and q, matrix A has six eigenvalues 

Ajt (k = 1,2,3,4,5,6). These eigenvalues are a function of the ratio of water 

depth to grid size h/Ax, the Courant number Cr = y/gKAt/Ax and the dimen- 

sionless wavenumber kAx. The numerical scheme is stable only if the moduli of 

all eigenvalues |Afc| are not greater than one. Instead of finding the analytical 

expression, it is more convenient to obtain the stability range numerically. Figure 

3.1 shows the variations of |Afc| for h/Ax = 1, Cr = (0,2) and kAx = (0,7r). From 

Figure 3.1, it apparent that only the first two of the six eigenvalue moduli j Ax | 

and IA2I can exceed one for certain values of h/Ax, CT and A;Ax. These two eigen- 

values are complex conjugate and therefore their moduli are exactly the same. In 

the following, it is sufficient to study the variation of j Aa | for different values of 

h/Dx, CT and kAx in greater detail. 

To be more accurate in accessing the stability range, we choose five cross 

sections corresponding to kAx = kir/10 (k = 1,2,3,4,5) from Figure 3.1(a) to 

make a 2-D plot which is shown in Figure 3.2(a). For fixed values of h/Ax and Cr, 

it is apparent from Figure 3.1(a) and Figure 3.2(a) that | Ax | reaches its maximum 

value when kAx — v/2 (the kink solid line in 3.2(a)). Therefore, the numerical 

scheme will be stable for other kAx values if |Ai | < 1 at kAx = 7r/2. Figure 3.2(b) 
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0   0 

Figure 3.1: Variations of six eigenvalue moduli fik (k = 1,2,3,4,5,6) with 
Courant number CT and dimensionless wavenumber kAx for a fixed 
value of h/Ax — 1. 
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shows the vaxiation of |Aa | with Courant number Cr for a fixed value of kAx = x/2 

and for several values of h/Ax = 0.1,1,2,5,10. From Figure 3.2(b), it seems that 

the stability range of the scheme is proportional to the value of h/Ax. However, 

further evaluation showed that the variation of \Xi\ with CT for h/Ax — 0.01 was 

quite close to that for h/Ax = 0.1. Therefore, we conclude that the scheme of 

using one predictor and one corrector is stable if Cr < 0.8, regardless the values 

of kAx and h/Ax. 
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Figure 3.2: Variation of eigenvalue modules \p,i\ with Courant number Cr. In 
(a), h/Ax = 1 and kAx = TT/10 (smooth ), TT/5 ( ), 37r/10 
(-•-•), 2TT/5 (••••), 7I-/2 (kink ). In (b), kAx = TT/2 and h/Ax 
= 0.1 (kink—), 1 (----), 2 (-•-•), 5 (-•••), 10 (smooth ). 

In real model applications where nonlinear effects are not negligible, the 

stability criterion evaluated above is not guaranteed to be accurate. Nevertheless, 
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it provides an estimation for the stability range for the numerical scheme. 

3.2.4    Convergence 

Linear stability analysis in the previous section shows that the numerical 

scheme for using one predictor and one corrector at each time step is stable if 

Courant number Cr < 0.8. In the real computation, however, the corresponding 

corrector formula is used several times until the iteration error between two suc- 

cessive results reaches a required limit. There are many methods to evaluate the 

error and we employed a combination of both absolute and relative errors for the 

model. 

Denoting / to be any one of the dependent variables, i.e., f — {»/,u,u}, 

then the relative error A/ between two successive iterations is given by 

i=M,j=N 

A/ =m=^  (3.80) 

E \^\ 
/n+1 and /* denote the current and previous iteration results, respectively. The 

corrector step is iterated if any of the A/'s exceeds 10~3 (or 10-4 for cases of 

high nonlinearity). For the case of cold start or other situations where a zero 

denominator will result, absolute error (the numerator in the above expression) is 

used instead of relative error. 

For weakly nonlinear case, the scheme typically requires no iteration unless 

problems arise from boundaries, or inappropriate values for Ax, Ay or At are used. 

For strong nonlinear case, however, more iterations are required for the model 

to converge. Further analysis showed that the iterated results oscillated around 

the desired solution. To increase the convergence rate, we applied an relaxation 
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technique to the iteration stage. Writing the previous and current iterated values 

as f*j and /,-j, then the adjusted value ffj for relaxation is given by 

& = (1 - R)fij + Rftj (3.81) 

where R is the relaxation coefficient which is in the range of (0,1). The adjusted 

value flj always lies in between f*- and /,-,,-. In all the model computations, we 

used the value of R = 0.2 which gives quite satisfactory results. 

3.3    Boundary Conditions 

Boundary conditions are vital for the numerical models to carry out the 

computation. No matter how valid are the model equations and how accurate 

are the finite difference scheme to discretize the equation terms, the model will 

not provide reasonable results if inappropriate boundary conditions are used. The 

three most commonly used boundary conditions are wave reflecting, wave absorb- 

ing and wave generating. A typical computational domain is shown in Figure 3.3, 

where waves travel into the domain from the left boundary at x = 0 (i = 1) and 

then propagate out of the domain from the right boundary at x = XL {i = M). 

The left and right boundaries are therefore referred to as wave generating (inci- 

dent) condition and wave absorbing (radiation) condition, respectively. The top 

and bottom boundaries located at y — 0 (j = 1) and y = yL (j = N) are vertical 

walls which fully reflect waves back into the domain and are referred to as wave 

reflecting condition. In the following, these boundary conditions will be examined 

in more details. 
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y=yL 
j=N 

y=0 
j=l    x=0 

i=l 

-^ x 
X=XL 
i=M 

Figure 3.3: Definition sketch of typical boundary conditions. 

3.3.1    Reflecting boundary 

This case corresponds to a vertical wall placed in a wave field. Based on 

physical grounds, the horizontal velocity at the direction normal to the wall should 

be zero everywhere at the wall from the bottom to the water surface. However, 

this condition can not be satisfied by any Boussinesq models which assume a 

quadratic variation of horizontal velocity with water depth. Instead, we derive the 

corresponding boundary condition based on the principle that the water volume 

flux across the vertical wall is zero. For convenience, the continuity equation of 

the Boussinesq model is rewritten here 

ijt + V • M = 0 (3.82) 
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where TJ is the surface elevation, M is the horizontal volume flux vector. For the 

weakly nonlinear case, we have 

M = (A + ST))U + n2
aih

3V(V ■ u) + n2a2h
2V[V • (hu)] (3.83) 

where u = (u, v) is the horizontal velocity vector. 

Assume ti to be the fluid domain and du the boundary. Integrating equa- 

tion (3.82) over ti results in 

dJ = -JmM.niS (3.84) 

where where n is the outward normal vector for the reflecting boundary, dS is 

an element of length along dCl, and V is the total excess volume of water in the 

domain. Assume dA to be an element of area, then we have 

V = / r\dA (3.85) 

If the domain is completely enclosed by impermeable walls, we require that 

the rate of change of the excess volume be zero. This requirement is then satisfied 

by the condition 

M • n = 0;      x e dQ, (3.86) 

which is the corresponding reflecting boundary condition for Boussinesq mod- 

els. For Boussinesq models using the depth-averaged velocity ü as a dependent 

variable, condition (3.86) can be simplified as 

ü • n = 0;      x e du (3.87) 

Unfortunately, the velocity u = (u, v) in the present model equations is not simply 

related to M and thus condition (3.87) is apparently not a complete statement. 

Consider, for instance, the case of a wall parallel to the x axis and located at 
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y = ?/£,, as shown in Figure 3.3. The water depth h is assumed to be constant in 

the neighborhood of the wall. Then condition (3.86) is equivalent to 

My = (h + 6ri)v + fi2h3{a + -)[uxy + vyy] = 0 (3.88) 
o 

where My is the y component of M (M = Mx\ 4- My}). It is apparent that setting 

v = 0 only covers a portion of the condition in (3.88). However, if we consider the 

leading order terms in the mass conservation equation, we have 

rjt + hux + hvy = 0(6, n2) (3.89) 

This may be differentiated with respect to y to obtain 

{riy)t + h[uxy + vyy\ = 0(6, n2) (3.90) 

Substituting equation (3.90) into equation (3.88) yields 

(Ä + Sv)v - „2h2(a + ±)(r)y)t = 0(6ß
2, /) (3.91) 

Therefore, to the accuracy of the weakly nonlinear Boussinesq models, the overall 

boundary condition (3.88) is satisfied by additionally imposing T)y = 0, which can 

be generalized as 

Vrj • n = 0;      x £ dtt (3.92) 

Condition (3.92) is consistent with the usual physical notion of total reflection 

at a vertical barrier. For fully nonlinear Boussinesq models, we still use the 

same combined boundary conditions (3.87) and (3.92) for reflecting walls. Notice 

that these conditions are not accurate to the order of approximation for the fully 

nonlinear model equations. 

For the velocity component UT tangent to the boundary, we require 

-j£ = 0;      x € dÜ (3.93) 

80 



This last condition essentially imposes a free-slip condition for the flow along the 

bounding wall, which is not inconsistent with the inviscid flow being considered. 

This last condition would not seem to be required by the kinematic constraints 

on the system, but it has been used repeatedly in the literature (Rygg, 1988), and 

we have not been able to stabilize the computational scheme without imposing it. 

In summary, for the case of a vertical wall parallel to x axis and located at 

y = yL as shown in Figure 3.3, the boundary conditions used in the model are 

v = 0;      7?y = 0;      «„ = 0; y = yL (3.94) 

Then the corresponding finite difference schemes are 

Vi,N   =   0 (3.95) 

Ui,N   =   —(48ulVVl - 36uti7v2 + l6uitN3 - 3ti,-,jv4) (3.96) 

m,N   =   2g(48iMi - 36jMi +1HJ*3-HM) (3.97) 

(i = l,2,-..,M) 

where Nk = N — k (k = 1,2,3,4). Similar expressions can be obtained for walls 

at other locations. 

3.3.2    Absorbing boundary 

The second commonly used boundary condition is referred to as radiating or 

open boundary, where all wave energy arriving from within the computing domain 

should be absorbed completely without reflection back to the domain. Treatment 

of this boundary is a problem of major interest in the modeling community, and 

we utilize some fairly well established techniques for the case considered here. 
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A perfect radiation boundary should not allow any wave reflection back 

to the domain. For the case where the wave phase speed C and the propagation 

direction 6 at the boundary x = XL are known, the radiation condition at is 

T)t + C cos(%x = 0 (3.98) 

The above equation is equivalent to the radiation condition derived by Sommer- 

feld (1949) from the potential flow theory. However, since the present model is 

essentially dispersive, there exists no single phase speed C which fully character- 

izes the system. Further, in two-dimensional applications, the wave direction 6 

is generally not known a priori. To treat the first problem, the phase speed C 

is usually specified by the long wave limit, i.e., C — y/gh. However, there exist 

potential problems for offshore boundary where water depth is close or less than 

zero, resulting in small or imaginary phase speeds. 

To solve the second problem of wave direction at the boundary, Engquist 

and Majda (1977) derived an approximate radiation boundary condition based 

on parabolic approximation. Assuming the principle propagation direction of 

waves at the boundary is close to the x-axis, the approximate radiation boundary 

condition is 
C2 

Vtt + Cr)xt - —Vyy = 0 (3.99) 

which corresponds to the imposition of a parabolic approximation on equation 

(3.98). 

The above approximate radiation condition inevitably introduces wave re- 

flection along the boundaries and can eventually cause the blowup of the model. 

To ehminate the problem of wave reflection, Israeli and Orszag (1981) proposed 

the concept of sponge layer in the region near radiation boundary. Basically, 

energy dissipation terms are added into the momentum equations so that wave 

amplitudes are reduced significantly at the radiation boundary.   These energy 
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dissipation terms corresponding to sponge layer in equations (3.2) and (3.3) are 

denned as 

Fsp = -W!(x, y)u + (w2(x, y)ux)x + (w2(x, y)uy)y + w3(x, y)JrV     (3.100) 

Gsp = -v>i{x, y)v + (w2(x,y)vx)x + (w2(x,y)vy)y + wz(x,y)M-7)     (3.101) 

where Wi{x,y) (i = 1,2,3) are spatial functions which specify the magnitude of 

dissipation effect by sponge layers in the domain. The first terms on right hand 

sides of equations (3.100) and (3.101) are equivalent to linear friction, which are 

referred to as "Newtonian cooling" by Israeli and Orszag (1981). The second terms 

are analogous to linear viscous terms in Navier-Stokes equations and are referred 

to as "viscous terms". The third terms are combined linear friction with radiation, 

which are referred to as "sponge filter". Israeli and Orszag (1981) demonstrated 

by examples that sponge filter is the best among the three dissipation terms for 

open boundary conditions. However, from our numerical experiments, we found 

that applying "Newtonian cooling" alone is sufficient to absorb wave energy for 

radiation boundary. 

There are no preferred forms for the sponge layer function u>,(x,y) (i = 

1,2,3). In the area where there is no need for energy dissipation, the values 

of Wi(x,y) are set to zero. In the area close to the radiation boundary where 

energy dissipation is needed, nonzero values of Wi(x, y) should be specified. To 

eliminate possible reflection from the sponge layer, the value of Wi(x, y) should 

increase gradually from the domain to the boundary. Assume that there is only 

one sponge layer located on the right end of the domain (i.e. from x = xs to 

x = XL) and the sponge layer function Wi(x, y) is only a function of x 

Wi(x,y) = af(x) (3.102) 

where c,-(* = 1,2,3) are constant coefficients corresponding to the three terms 

in (3.100) and (3.101), and f(x) is a smooth monotonically increasing function 
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varying from 0 to 1 when x varies from xs to x^. The values of c* are determined 

by the specific problem. The definition of function f(x) is usually given by given 

by 
exV[(xP)N-l] Xq<x<XT 

f{x) = l      eMV ~ 1 (3.103) 
0 0 < x < xs 

where xp is the transferring coordinate which is defined by 

xp = - (3.104) 
XL-XS 

Though the value of N can be arbitrary (1, 2, 3, ...), we choose N = 2 in 

the model for all the computations. The width of the sponge layer (i.e. xi, — xs) 

is usually taken to be two or three times of the dominant wave length. Similar 

expressions can be obtained for sponge layers on three other ends of the domain. 

The final representation of functions to,-(x, y) (i = 1,2,3) are the summation of 

all sponge layers. 

3.3.3    Generating boundary 

In most model applications, the incident wave conditions are given. For a 

regular wave, these conditions include the wave height and the wave period. For 

a random wave train, the corresponding time series of surface elevation or the 

power spectrum at the incident boundary are known. With this information, it is 

possible to generate the desired wave by specifying surface elevation 77, horizontal 

velocity components u and v at the incident boundary if the effects of nonlinearity 

and reflection are negligible. 

For the propagation of monochromatic waves in one dimensional flow, 

Nwogu (1993) used the linearized relation derived from the extended Boussinesq 

84 



equations to compute horizontal velocity at the generating boundary ui(x = 0, t) 

from the given surface elevation 77/(2 = 0,£), which is given by 

UI = kh0[l-(a + l/3)(kh0y)  * (3-105) 

where k is the wavenumber and h0 is the water depth. For the simulation of a 

random wave train, condition (3.105) is applied to each of the Fourier components 

to obtain the corresponding velocity. The corresponding time series of ui is then 

obtained by the method of linear superposition. 

In many practical applications, the effect of wave reflection from the domain 

back to the incident boundary is not negligible. One commonly used method to 

account for these reflecting waves is to apply radiation boundary (3.98) with 

negative phase speed in the incident boundary. Denote rji to be the incident wave 

propagating in positive x direction and TJR the reflected wave traveling in opposite 

direction. Assume that the magnitude of the phase speed for these two waves is 

the same and is denoted by C, then from radiation condition (3.98) we have 

(Vi)t + C(m)x   =   0 (3.106) 

(r)R)t-C(r)R),   =   0 (3.107) 

The actual surface elevation is related to the incident wave and the reflected wave 

by 

T} = Vi~VR (3.108) 

Combining equations (3.106), (3.107) and (3.108), we obtain the following bound- 

ary condition for the incident boundary with strong wave reflection 

% - Cr\x - 2(rn)t = 0 (3.109) 

This is exactly the same as that used by Nwogu (1993) in his model. As stated 

in previous section, however, the phase speed C for the reflecting wave is gener- 

ally not known a priori. In order to apply condition (3.109), approximate phase 
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speed C has to be used. The inaccurate evaluation of phase speed will inevitably 

generate non-existing waves around the boundary. Not only do these waves affect 

the accuracy of the computing wave field but may also cause the blowup of the 

model. For two dimensional case, the problem becomes more severe due to the 

directions of reflecting waves are also unknown. 

3.4    Wave Generation Inside the Domain 

Comparing to radiation condition (3.98), the sponge layer works quite well 

for dissipating the energy of radiating waves. However, simply adding a sponge 

layer at incident wave boundary will also dissipate the incident wave energy. The 

possible solution for using sponge layers to dissipate radiating waves only is to 

generate waves inside the computational domain, instead of on the boundary. 

Such an approach has been documented previously by Larsen and Dancy (1983) 

who used a somewhat ad-hoc source mechanism where water mass is added and 

subtracted along a straight source/sink line inside the computing domain. Sponge 

layers are placed in the ends of the domain to effectively dissipate the wave energy 

of outgoing waves with arbitrary frequencies and propagating directions. 

3.4.1    Theory 

The problem we are solving is an initial boundary value problem. It would 

be desirable to develop the corresponding boundary conditions for Boussinesq 

models which can provide a combination of wave generation, wave absorption, and 

wave reflection effects. However, the problem of providing a well-posed boundary 

value problem for these equations is essentially unsolved. In particular, providing 

absorbing conditions which will work for the entire range of modeled frequencies 
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is complicated, due to the wide range of phase speed variation (in both amplitude 

and direction) at the boundary. 

In recognition of the difficulties imposed by this approach to model opera- 

tion, we follow the lead of a number of previous Boussinesq model developers and, 

instead, generate waves using an internal source mechanism. Larsen and Dancy 

(1983) proposed a method based on the balance of mass flux to add and sub- 

tract water along a straight line inside the computing domain. This approach was 

demonstrated to work well in a staggered-grid differencing scheme, where water 

is essentially being added to or drained from a single grid block. In applying this 

technique to the Boussinesq model on an unstaggered grid, however, we found 

that use of a single source line caused high frequency noise, leading to the blowup 

of the model. Therefore, we use, instead, a spatially distributed mass source 

f(x,y,t) added to the mass conservation equation (3.1). The exact expression of 

f(x,y,t), which will be shown below, is determined by the characteristics of the 

waves to be generated. 

Assume that in a domain with constant water depth of h, we want to 

generate a plane wave with amplitude OQ, wavenumber k, and angular frequency 

u). The angle between the propagation direction of the wave and x-axis is 9, 

as shown in Figure 3.4. Without losing generality, we assume the center line of 

the source region is parallel to y-axis. Then the source term in equation (3.1) is 

defined as 

f(x, y,t) = D exp[-ß(x - xs)
2] sm(Xy - ui) (3.110) 

where ß is the shape coefficient for the source function, xa is the central location 

of the source, D is the magnitude of the source function, and X = k sin(0) the 

wavenumber of the plane wave in y direction. 
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xl    xs     x2 

Figure 3.4: Source function definition in the computing domain. 

By eliminating nonlinear terms in equations (3.1)-(3.3), the analytical solu- 

tion for f(x,y,t) can be determined with Green's function. A detailed derivation 

is included in Appendix B and in Wei and Kirby (1997). Here only we only show 

the the final results of derivation. The magnitude D of source function is given 

by 
n _ 2a0 cos(e)(u}2 - aigk4h3) 

~       u*kl[l - a(kh)*] (6-ili) 

where h, ao, k and u have been denned above, g is the gravitational acceleration, 

a = —0.390 is the optimized value for the best linear dispersion relation, eti — 

a + 1/3, and / is an integral constant which is defined as: 

/oo nj^ 
exp(-ßx2) exp(-ilx)dx = . - exp(-/2/4/3) (3.112) 

-oo \   D 
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where I = kcos(6) is the wavemimber in x direction. 

In theory, the shape coefficient ß can be any number. Large ß value is gen- 

erally preferred since the corresponding source region is narrower. However, the 

model with a too narrow source region may be inaccurate a poor finite difference 

representation of the source function. By trial and error, it was found that good 

results were obtained when the width of the source function W equals to about 

half of the wavelength L, i.e. 

W = 6^ (3.113) 

where 6 is a constant of order 0(1). The width of source function W is defined as 

the distance between two coordinates xi and x2 where the corresponding height 

of the source function is equal to exp(—5) = 0.0067 times of the maximum height 

D. Therefore, the values of x\ and x% are the roots which satisfy the quadratic 

equation 

ß{x - x3f = 5 (3.114) 

from which we obtain 

£i,2   =   x*±yä (3-115) 

W   =   |x2-xa| = 2J| (3.116) 

From equations (3.113) and (3.116), the shape coefficient ß is related to wavelength 

L and 8 as 

ß = a^J (3-117) 

3.4.2    Testing results 

To verify the wave generating theory described above, we apply the numer- 

ical model to generate several types of waves in a 1-D domain of constant water 
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depth.. The domain is bounded by two vertical walls, as shown in Figure 3.5. The 

horizontal length is Lx = 50 meters (m) and the water depth is h = 0.5 m. The 

center of the source region is located at xs = 25 m, which is the also the center of 

the computing domain. To absorb wave energy, two sponge layers of width 5 m 

are placed at both ends of the domain. 

0 ^7 

- in 
sponge layer 

H  
source region sponge layer 

 H 

Figure 3.5: Definition sketch of one dimensional domain for verifying the theory 
of wave generation. 

The first wave to be generated is monochromatic with wave period T = 1 

second (s) and wave height H = 0.05m, which is appropriate to many of those 

waves generated by laboratory experiments. The grid size is Ax = 0.02 m and the 

time step is At = 0.02 s. The corresponding depth to grid size value is h/Ax = 25 

and the Courant number CT = 2.21. These parameters are, according to the trend 

in Figure 3.2 (6) of linear stability calculation, in the stable range. This is verified 

directly by the fact that no stability problem was encountered for the model to 

run for over 100 wave periods. The coefficient for source region width in (3.113) 

is specified as 8 = 0.3, making the source region width contain 19 grid points. 

Figure 3.6 shows the spatial profiles of surface elevation rj at various time t/T = 

(2, 10, 20, 40, 100). 
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Figure 3.6: Spatial profiles of surface elevation ait = 2s (A), 10 s (B), 20 5 (C), 
405 (D), 100 s (E). 

At the very beginning (i.e., t/T = 2), there are only a few waves being 

generated around the source region. As time increases, more waves are generated 

and then propagate out of the source region. When waves arrive in the sponge 

layer regions at the two ends of the domain, wave height decreases due to the 

absorption of wave energy by the sponge layers. The effect of wave reflection from 

the sponge layers back into the domain is negligible. Around time t/T = 40, the 

model reaches quasi steady state, as shown in the figure that the two profiles of 

i} at time t/T = 40 and time t/T = 100 are very similar. The wave crests and 

troughs outside source region at time t/T = 40 and time t/T = 100 are very 

close to the dashed grid lines whose vertical distances are 0.05 m, the same value 
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as the target wave height. Further quantitative analysis shows that the relative 

error between the target and the generated wave heights is less than 0.2%. The 

magnitude of discrepancy between these two wave heights is mainly depended on 

the grid size Ax and the width coefficient of the source function 6. 

From linear wave theory, a random wave train can be decomposed into 

many monochromatic wave components whose wave periods and wave heights 

are determined from the corresponding power spectrum. To generate a desirable 

random wave train, each of these wave components should be generated correctly. 

To examine applicability of the model for generating a random wave train, we 

apply the model to generate three other monochromatic waves whose periods are 

T =(0.5, 1.5, 2.0) s. In order to mimic the actual generation for a random wave 

train, all parameters (except for wave periods) for these three cases are kept the 

same as those in previous one with T — 1 s. We ran the model for five thousand 

time steps (or i.e., 100 seconds) and there were no problems. Results of the spatial 

profiles of rj at t = 100 s for all four cases are shown in Figure 3.7. By simply 

looking at these profiles, the generated wave heights are quite close to the target 

wave height of 0.05 m. 

A more accurate estimation for the height of generated waves is to check 

the coordinates of crests and troughs for the corresponding wave. For the case 

of T = 0.5 s, the generated wave height is somewhat higher than the target one 

(about 1.4%). The reason is mainly due to relatively large values of grid size 

and time step for such a short wave whose wavelength is 0.49 m. The generated 

wave heights for T = 1.0 s and T = 1.5 s are very close to the target value of 

0.5 m, all within 0.2 % error range. For T = 2.0 s, the generated wave height is 

about 0.484 m, equivalent to 3.2% less than the target one. Further analysis shows 

that it is caused by the insufficient length of the sponge layers (the corresponding 
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Figure 3.7: Spatial profiles of surface elevation at t = 100s: (a) T = 0.5 s; (b) 
T = 1.0 s; (c) T = 1.5 s; (d) T = 2.0 s. 

wavelength for this case is about4.1m). For instance, by increasing sponge layer 

length from 5 m to 6 m, the error is reduced to 0.4%. 

For a random wave train with peak period T = 1 s, the energy at the 

frequencies corresponding to T = 0.5 s and T = 2.0 s is small compared to the 

peak value. The relatively large error for the two spectrum ends will have much 

less effect on the total energy spectrum. Therefore, the use of a fixed grid size 

Ax, time step At and width coefficient of source function 6 determined from the 

peak wave is justified. 

In the computation described above, only the linearized version of the 
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model was used, which is consistent with the proposed theory of wave generation. 

In real applications, however, nonlinear terms have to be included into the model 

equations for simulating the effect of nonlinear interaction. With the inclusion 

of the nonlinear terms, the corresponding wave fields will be different from the 

previous ones. We run the model for the case of T = 1.0 s using both the weakly 

and the fully nonlinear versions of the model. Figure 3.8 shows the spatial profiles 

of 77 obtained from the weakly and fully nonlinear models, comparing with results 

from the linear model. The wave heights across the domain obtained from the 

linear model is quite constant, as shown in Figure 3.8(a). However, that is not 

the case for the weakly and fully nonlinear models. Due to nonlinear interaction, 

the resulting variation wave heights (wave crests and troughs) over the domain 

exhibit slowly modulation, as shown in Figure 3.8(6) and (c). The modulation to 

wave height of a sinusoidal wave train propagating over constant water depth has 

been observed from laboratory and field experiments. 

To further illustrate the effect of nonlinear interaction to the sinusoidal 

wave train, we obtain time series of surface elevation at three locations from 

these three Boussinesq models (i.e., linear, weakly nonlinear, and fully nonlinear). 

Figure 3.9 shows the comparison of time series of surface elevation from t = 40 s to 

t = 45 s. Again, a clean sinusoidal wave train is apparent for the results obtained 

from the linear model at the three locations, as shown by solid lines. The surface 

elevations obtained from the other two nonlinear models, however, show small 

deviations from the desirable sinusoidal wave. 

3.5    Numerical Filtering 

Due to nonlinear terms in the model equations, high frequency waves are 

generated during the evolution process. These super-harmonic waves could have 
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Figure 3.8: Spatial profiles of surface elevation at t = 100 s:  (a) linear model; 
(b) weakly nonlinear model; (c) fully nonlinear model. 

very short wavelengths whose minimum value is 2Ax for a fixed grid resolution 

Ax. Despite the improved linear dispersion property for the present Boussinesq 

model in intermediate water depth, the depth to wavelength ratios for these short 

waves are too large for the model to be valid. The magnitude of these short waves 

usually are amplified rapidly once they are generated, causing the eventual blowup 

of the model. 
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Figure 3.9: Comparison of time series of surface elevations at locations (a) 
x = 10 m; (b) x = 15 m; and (c) x = 20 m for three Boussinesq 
models: linear model ( ), weakly nonlinear model ( ), and fully 
nonlinear model ( ). The center of the source is at xs = 25 m. 

3.5.1    Formulation 

To eliminate these short wave components which pose potential stability 

problems, numerical filtering proposed by Shapiro (1970) is employed in the model. 

Based on the method of weighted averages, Shapiro (1970) derived a system of 

filter formula, ranging from low to high orders. For the one dimensional case, the 

general form of a numerical filter is given as 

Zj = üQZJ + a,i(Zj+i + Zj-i) H \- üN(ZJ+N + ZJ-N) (3.118) 
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where Z = {77, u} represents the original values which consist of long and short 

wave components, Z* = {77, u}* represents the new values with short wave being 

filtered out, subscripts j, j ± 1, j ±2, ■•-, j±N are grid indices where values of 

Z* and Z are used for filter evaluation, a0, ax, • • •, üN are weighted coefficients 

which is determined by the characteristics of the filter. 

The property of a filter is determined by the response function R which is 

defined as the ratio of the smoothed amplitude ZJ to the unsmoothed amplitude 

Zj. Using the Fourier component to represent the original value Z results in 

Zj+n = Zj exp(inkAx) (3.119) 

where n is an integer, i = y/—\ is the unit imaginary number, k is the wavenumber, 

and Ax is the grid size. From equation (3.119) we have 

Zj+n + Zj-n = 2Zj cos(n0);    6 = it Ax (3.120) 

Using equation (3.120), the response function for the filter (3.118) becomes 

Z* 
R=-^- = a0 + 2a1 cos(0) + • • • + 2aN cos(N0) (3.121) 

For an ideal low pass filter, the corresponding response function R should 

be zero for the undesirable short waves and be one for the long waves. For the 

filter expressed by (3.118) which uses 2iV + 1 surrounding points for weighted 

averages, the response function R is depended on the actual values of <z0, a1? • • •, 

and ajv. As shown by Shapiro (1970), there exist an optimum response function 

R in (3.121) which is the most accurate representation of an ideal low pass filter. 

The optimum response function is given by 

*-!-*»(*§£) .X-.^jJl-) (3,22) 

where L = 2-KJk is the wavelength. Using trigonometric function to transfer 

the products of sin and cos functions in equation (3.122) into summation terms, 
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the corresponding coefficients an (n = 0,1, ...N) in (3.121) are straightforward to 

obtain. For instance, if JV = 4 (corresponding to the filter used in the model), we 

have 

R = 1-*•(£) 

=   -^- (186 + 112 cos(0) - 56cos(20) + 16 cos(30) - 2 cos(40)) (3.123) 
^200 

Then the corresponding filtering formula is given by 

Z* =      ~ [1862* + 56(Zi+1 + Zj-i) - 28(Zi+2 + Zj-2) 

+ 8(Zj+3 + Zj-s) - (Zj+4 + Zj_4)] (3.124) 

The optimum filters for other JV values could be obtained in a similar way. 

The variations of R with L/Ax for N = 1,2,4,8 are shown in Figure 3.10. For 

the shortest wave whose wavelength is L = 2Ax, the response function R is equal 

to zero for all JV, indicating that this wave is eliminated completely, regardless 

the number of points used for the optimum niters. As wavelength L increases, 

the value of R increases and approaches one in the limit of L —> oo. Therefore, 

there is less filtering effect on long waves. The transition length from R = 0 to 

R = 1 is depended on the number of points N used in the filter. The large the 

value of N, the shorter the transition length for R. For a given wavelength (for 

instance, L/Ax = 5), the filter which uses more points for weighting averages has 

less filtering effect on the wave. 

For accurate simulation, at least 10 grid points are needed for the repre- 

sentation of one wavelength. For a wave whose wavelength is about 10 times of 

grid size, there will be 10% wave height loss if we applying the lowest order filter 

with N = 1. This loss is equivalent to twenty percent energy loss and is not 

tolerable. Choosing high order filter with too large value of N (JV > 4), on the 
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Figure 3.10: Response functions of the 1-D filter for N = 1, 2, 4, 8. 

other hand, will allow the existence of some short waves whose wavelength is a 

little greater than 2Ax. In the present model, the numerical filter with N = 4 

is employed. This filter reduce the energy for short waves with wavelengths less 

than 6 grid points and admits less than 0.01 percent of wave height loss for waves 

whose wavelengths are equal to or large than 10 grid sizes. 

It is straightforward to obtain the corresponding filtering formula for the 

2-D case by applying equation (3.124) to the x direction first and then to the 

y direction. However, it is cumbersome to write the formula and inconvenient 

to code it in the program. The reason is that the corresponding filter formula 

contains a total number of 9 x 9 = 81 points for weighting average. To solve the 

problem, the 1-D formula (3.124) is applied twice in the model code, first to the 

x direction and then to the y direction. The corresponding response function for 
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Figure 3.11: Response function of the 2-D filter for Nx = 4, Ny — 4. 

the 2-D filter given by 

R  = 
. 8 /AAy' 

WAa7J [ ~Sm  \Ly/Ay) 
1 - sin1 

(3.125) 

(3.126) 

where / and A axe the wavenumbers in x and y directions, respectively, and Lx = 

2TT/1 and Ly = 2TT/A are the corresponding wavelengths. Figure 3.11 shows the 

variation of the response function R for the 2-D filter with the ratios of wavelengths 

to grid sizes Lx/Ax and Ly/Ay. For waves whose wavelength in x direction (Lx) 

is twice of the grid size Ax, the corresponding response function R is zero for 

all values of Ly/Ay. This is also true for interchanging x and y. Waves with 

Lx/Ax = 2 or Ly/Ay = 2 are eliminated completely by applying the filter. For 

waves with large wavelengths, the corresponding response function R increases, 

indicating that the effect of filtering is reduced. 
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3.5.2    Comparison 

To show the effect of numerical filtering, we apply the model for a simple 

case of wave propagation in a rectangular basin bounded by four vertical walls 

(more results for this case will be given in Chapter 5). The basin dimension is 

10 m x 10 m and the water depth across the domain is constant with h = 0.5 m. 

A Gaussian hump of water with zero velocity everywhere is placed in the center 

of the basin initially and then released. Because of gravitational forcing, waves 

will be generated and propagate in the basin. Though there is neither analytical 

solution nor experiment data to compare with, the computed surface elevation at 

any given time should be symmetric about the two lines which are parallel to the 

wall and crossing the center of the basin, due to the symmetry of the basin and 

of the initial condition. The surface elevation is also symmetric about the two 

diagonal lines across the basin. 

We run the weakly nonlinear version of the present model for two cases, one 

with the numerical filter (3.124) applying for every 100 time steps and the other 

without using any filters. For meaningful comparison, all the parameters used in 

the model are kept the same for these two runs. The grid size is Ax = 0.1 m, 

the time step is At = 0.02 s, and the maximum time step for the model to run 

is 2501 (a time lapse of 50 seconds). Figure 3.12 shows the two resulting cross 

sections of surface elevation at the time step it = 2501 and at the y = 5.0 m. 

The solid line is the result using the 2-D numerical filter (N = 4) for every 100 

time step and the dashed line corresponds to the case without using any niters. 

Though the overall shapes for the two lines are quite similar, careful examination 

shows that the solid line is quite symmetric about the center i = 5m. However, 

the dashed line exhibits small deviations from the symmetry, as evident for the 

surface elevations at the locations around the center x = 5m, near x = 2m and 
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i = 8m, and close to the boundaries (i.e., x — 0 and x = 10m). 
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Figure 3.12: Comparison of surface elevation at time step it = 2501 and y = 
5.0 m: applying filter for every 100 time steps ( ); without using 
any filters ( ). 

An alternate way to examine the symmetry of surface elevation is to plot 

the corresponding spatial profile for the entire domain, as shown in Figure 3.13 

(a) and (6) for the contour plots of computed rj at the time step it = 2501. On the 

first look, these two plots seem to be quite identical. However, careful examination 

reveals that the contours in Figure 3.13(6) are not as symmetric as those in Figure 

3.13(a), see the contours around the center of the domain. Without applying 

numerical filters, the symmetry of model results will be distorted by those short 

waves whose wavelengths are close to two grid sizes. 

Despite its advantage, the use of numerical filter in the model computation 

should be kept to a minimum. Every time when the filter (3.124) is applied, a 

fraction of energy for the long waves is also lost. The accumulating effect of the 
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Figure 3.13: Surface elevation profiles at time step it = 2501: (a) applying 
numerical filter for every 100 time step; (b) no numerical filter is 
used. 

loss is not negligible if the numerical filter is employed too frequently (e.g., every 

time step). It is recommended that the filter be used once for about every 100 

time steps (or about two wave periods). 
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Chapter 4 

SIMULATION OF WAVE BREAKING AND RUNUP 

4.1    Introduction 

The importance of wave breaking in nearshore processes cannot be over 

emphasized. As waves propagate into surf zone areas, wave height keeps increasing 

and the wave front face steepens, which eventually causes waves to break. In the 

process of breaking, wave height decreases dramatically and the corresponding 

wave energy is transferred into necessary forcing to drive nearshore circulation 

and to initiate sediment transport. 

It has been known that the breaking of obliquely incident waves is respon- 

sible for the generation of longshore currents along a straight beach. The driving 

force for longshore currents was referred to as radiation stress by Longuet-Higgins 

and Stewart (1964), due to its similarity to radiation pressure in the field of elec- 

tromagnetics. Based on the concept of radiation stress, a number of nearshore 

circulation models have been developed. The success of these models, however, 

depends greatly on the accuracy of simulating wave breaking (location, surface 

elevation, etc.) by short wave models. 

Despite the difficulty in mathematical description for discontinuity of sur- 

face elevation, research work on wave breaking has been advanced significantly. 

Reviews on the subject of wave breaking on beaches were provided by Galvin 
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(1972) and by Peregrine (1983). Most of the research work has been concentrated 

on the initialization of wave breaking for given wave conditions. Based on the ratio 

of wave height to water depth, the magnitude of particle velocity in a wave crest 

with that of wave phase speed, or the curvature of surface elevation, a number of 

empirical formulas have been proposed and verified by experiment results. 

The problem of wave runup is essential for the design of breakwaters and for 

the prediction of floods caused by storms or tsunamis. In a swash zone, as waves 

move up and down the beach face, the corresponding shoreline boundary location 

changes constantly, making it difficult to describe by mathematical formula and 

by numerical treatment. Due to relatively small water depth in swash zones, 

bottom friction is no longer negligible. However, depending on the empirical 

formula chosen for the model and the corresponding friction coefficient for the 

beach bottom, the calculation of bottom friction varies significantly. 

In this study, we attempt to simulate the processes of wave breaking and 

wave runup by including additional terms in the model equations. With the 

already improved linear dispersion property in intermediate water depth and the 

improved property for large nonlinear waves, the inclusion of breaking and runup 

would make the model valid in general coastal environments. 

4.2    Simulation of Wave Breaking 

The early models to simulate wave breaking are based on the nonlinear 

shallow water wave equations. Due to the non-dispersive property, these models 

predict, prior to wave breaking, the continuous steepening of the front face of a 

wave. Two numerical approaches to simulate wave breaking have been reported 

in the literature. In the first approach, the turbulent bore due to breaking was 

replaced by a discontinuity in the physical variables and by jump conditions which 
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conserve mass and momentum (Whitham, 1958). In the second approach, the Lax- 

Wendroff scheme was utilized to discretize the model equations, assuming that 

numerical dissipation is equivalent to the effect of wave breaking. The second 

approach has been used by many investigators, among which are Abbott et al. 

(1984), Hibberd and Peregrine (1979), Packwood (1980), and Kobayashi et al. 

(1989). Compared to Boussinesq breaking models which will be discussed below, 

shallow water wave models axe easy to apply. However, these models are restricted 

to the areas of extremely shallow water and in general cannot provide a realistic 

prediction of the actual location of wave breaking and associated characteristics. 

Observing the similarity between broken wave propagation and hydraulic 

jumps, Heitner and Housner (1970) proposed a breaking model which includes an 

eddy viscosity term into the Boussinesq equation to dissipate wave energy due 

to breaking. The eddy viscosity is expressed in terms of a mixing length and a 

velocity scale, which is related to the turbulent kinetic energy. This approach 

is originated by Von Neumann and Richtmyer (1950) for the analysis of gas dy- 

namics. Wave energy loss is limited to the front face of waves where the change 

of wave properties (i.e., the horizontal gradient of horizontal velocity) exceeds a 

certain criteria. 

Similar approaches based on the eddy viscosity formula have been used 

by a number of investigators to extend Boussinesq models to the surf zone. Tao 

(1983) combined the eddy viscosity with a transport equation for the turbulent ki- 

netic energy. Karambas and Koutitus (1992) used an algebraic closure with eddy 

viscosity proportional to the local water depth times the linear long wave celerity. 

Zelt (1991) implemented the eddy viscosity formula in a Lagrangian Boussinesq 

model to study the runup of breaking and non-breaking solitary waves over con- 

stant slopes. Good agreements between numerical results and experimental data 
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were obtained. 

A different approach for simulating wave breaking is based on the concept 

of surface rollers proposed by Svendsen (1984). Deigaard (1989) is the first to 

apply the concept of the surface roller for simulating wave breaking. Arguing 

that the local energy dissipation for wave breaking is dependent on the vertical 

gradient of the horizontal velocity profile rather than horizontal gradient, Schäffer 

et al. (1993) modified and applied the roller model to the extended Boussinesq 

equations derived by Madsen et al. (1992). During the process of wave breaking, 

a surface roller is generated on the front face of a wave and transported with the 

wave phase speed, which is larger than the depth-averaged velocity. The non- 

uniform distribution of horizontal velocity with water depth results in additional 

convective terms in the momentum equations. These terms play the role of dis- 

sipating wave energy during the breaking process. Wave height variations in surf 

zone areas predicted by the model for the 1-D case have been shown by to be in 

good agreement with experimental data. The extension of the roller model to the 

2-D case for directly calculating wave-induced currents is described by S0rensen 

et al. (1994) and Madsen et al. (1994). 

Another wave breaking model, which is more closely related to the physical 

aspects of processes in surf zone areas than the eddy viscosity model and the 

roller model, was proposed by Yu and Svendsen (1995). Realizing that potential 

flow theory is not sufficiently valid in surf zone areas, Yu and Svendsen (1995) 

derived a set of depth-integrated governing equations directly from the Navier- 

Stokes equations. The velocity variables are split into a potential part and a 

rotational part. Compared to the Boussinesq equations derived from potential 

theory, additional convective terms were obtained from the rotational part of 

velocity. It is these terms that dissipate energy in the process of wave breaking. 
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Preliminary results from this vorticity model for 1-D wave propagation showed 

promising results. 

Of the three wave breaking models for Boussinesq equations, we chose the 

eddy viscosity model for simulating wave breaking. Despite of some unphysical as- 

sumptions made in the eddy viscosity model, numerical calculation showed that it 

is capable of predicting reasonably accurate wave height variations and associated 

properties in surf zone areas. Though physically more accurate, the numerical im- 

plementations for the roller model and the vorticity model is quite complicated. 

In order to evaluate the dissipation terms, additional empirical parameters are 

required to estimate the roller shape, the roller location, and the distribution of 

rotational velocity components. Obviously, these approximation made the overall 

models to be less accurate. 

Following the approach of Heitner and Housner (1970) and of Zelt (1991), 

the corresponding energy dissipation terms in the right hand sides of equations 

(3.2) and (3.3) are given by 

FbT     =     {vhUx)x + {vhUy)y (4.1) 

Gbr      =      {vhVx)x + (fbVy)y (4.2) 

where u and v are the x and y components of horizontal velocity ua, respectively. 

The notion v\, is the eddy viscosity which is defined as 

vh = -B8\h + ri)2V ■ ua (4.3) 

where B is a coefficient related to the local shape of the waves and the correspond- 

ing critical value for wave breaking to take place, 8 is the coefficient of mixing 

length, whose value is determined empirically. In the computation which will be 

shown in Chapter 5, we use it as a constant, i.e. 6 = 2. Zelt (1991) used velocity 
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gradient to determine wave breaking and defined the critical value of velocity gra- 

dient as u* = —O.Zyg/h. Using the leading order relation (linear and long wave) 

from the model equations, the critical value for velocity gradient is equivalent to 

the slope of surface elevation 77* = —0.3. To avoid the abrupt change in eddy 

viscosity which might cause instability in numerical computation, the coefficient 

B is given by 

1 if       V • u < 2t£ 

B = \ (^f-1) if 2«;<v.«<«; (4.4) 
0 if        V • u > u*x 

We have applied this simple eddy viscosity model to simulate the shoaling 

and breaking of 1-D regular and random waves and compared with two experi- 

ments. For the case of regular waves, the experiment was conducted in a wave 

flume in Delft Hydraulic where the a bar-type geometry was seating on the flat 

bottom (Dingemans, 1994). For the case of random waves, the experiment was 

conducted in a wave flume in Kyoto University in which the bottom geometry con- 

sists of a constant water depth and a constant slope (Mase and Kirby, 1992). The 

agreement between the model results and the data from these two experiments 

are quite good. The case of random waves will be shown in Chapter 5. 

We have also applied the model to simulate the case of 2-D wave breaking. 

However, the comparisons between the model results and experimental data in 

the breaking zone are not as good as those for 1-D case. The reason maybe due 

to the localization of the breaking terms in the model which are activated only 

when the local properties of the wave exceed the breaking criterion. While in 

reality, the breaking of a wave crest at a given location can affect the breaking of 

its neighboring points and spread across the crest. More research work is needed 

for implementing 2-D breaking model. 
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4.3    Simulation of Wave Runup 

Unlike wave breaking, there exist analytical solutions to shallow water 

equations for wave runup under very special conditions. Using coordinate transfor- 

mation, Carrier and Greenspan (1958) obtained exact expressions for the runup 

of nonbreaking periodic waves over constant slopes. Following the approach of 

Carrier and Greenspan, Synolakis (1986) obtained solutions based on linear and 

nonlinear theory, including solitary runup over constant slopes. The extension of 

analytical solutions to 2-D case was given by Thacker (1981), who obtained the 

required bottom geometry and initial surface elevation for predefining solution 

forms of velocity. 

Analytical solutions are useful tools for studying wave runup problems 

and for verifying numerical models. However, these solutions are not valid when 

wave breaking occurs, which is, unfortunately, the most general case for wave 

propagation over a beach. 

For the problem involving wave breaking and wave runup , numerical simu- 

lation is the only method being used at present. For shallow water wave equations, 

a widely used numerical scheme is based on mass conservation to determine the 

shoreline grid. Dividing the dry land cells and wet cells, the shoreline grid changes 

constantly and has to be determined at each time step. Combining with upwind or 

other low order numerical schemes to discretize equation terms, this kind of runup 

models has less stability problems and works quite well. Liu et a/., (1995) applied 

such a model to study solitary wave runup on a circular island and numerical 

results were shown to be in good agreement with experimental data. 

However, for numerical models based on Boussinesq equations, it is difficult 

to adapt the same approach as used by the shallow water wave model for moving 
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shoreline. In all Boussinesq models, velocity or mass flux are obtained from a 

system of tridiagonal matrix equations. A varying number of grid points at each 

time step due to the changing shoreline location makes it inconvenient for applying 

tridiagonal matrix solution. In addition, Boussinesq equations include dispersive 

terms with third-order derivative, which are in same form as truncation errors if 

low order numerical schemes are used to discretize all equation terms. 

The difficulty for determining the shoreline location in an Eulerian system 

has lead a number of investigators to develop runup models based on a Lagrangian 

coordinate description. For Boussinesq equations written in a Lagrangian system, 

the movement of individual fluid particles in a domain is computed at each time 

step. There is no special treatment for particles at the shoreline and thus the 

corresponding numerical scheme is simplified. Heitner and Housner (1970) applied 

a Lagrangian model to study tsunami runup problem. Pedersen and Gjevik (1983) 

and Zelt (1991) used a similar approach to simulate solitary wave runup over 

slopes. Good agreement between numerical results and experimental data have 

been reported. 

In order to preserve the Eulerian description for Boussinesq equations and 

to overcome the difficulty for varying the number of grid points at each time step, 

several approaches have been proposed. Tao (1983) developed a runup model 

based on the so called slot-technique, in which artificial slots with width between 

0.01 to 0.001 times the grid size are added into the computational domain. With 

modification, Madsen et al. (1994) applied the method to the extended Boussinesq 

equations for simulating runup. 

Casulli and Cheng (1992) proposed a method which includes dry cells in 

the computing grids by specifying zero total water depth at the dry cells. In 

this study, we attempt to modify the approach of Casulli and Cheng (1992) by 
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Figure 4.1: Definition sketch of runup model based on a thin layer of water. 

specifying a minimum thickness of water for physically dry cells, instead of giving 

zero to water water depth. The reason for the modification is due to singularity 

for friction computation if zero water depth is used. This thin layer of water 

should remain almost motionless due to the balance between gravitational force 

and bottom friction. Figure 4.1 shows the definition sketch for the runup model. 

Since the effect of bottom friction is no longer small during the process of 

wave runup, the corresponding bottom friction terms are included in most of the 

runup models. The following is a bottom friction formula for 1-D depth-averaged 

turbulent flow: 
K 

bottom h + rj 
u\u\ (4.5) 

where K is the bottom friction coefficient, h + rj the total water depth, and ü the 

depth-averaged velocity. Expression (4.5) has been implemented in runup models 

by a number of investigators, including Heitner and Housner (1970), Packwood 

and Peregrine (1981), and Zelt (1991). In this study, we utilize the same formula 

as (4.5) in the Boussinesq model. The corresponding terms in the right hands side 
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of equations (3.2) and (3.3) are given by 

zr 
Fb = —r—Vu2 + v2 u (4.6) 

h + 77 v     ' 

Gb = -——Vu2 + v2 v (4.7) 

where u and u are components of velocity ua (not the depth-averaged velocity) in x 

and y direction, respectively. In real application, the friction coefficient K should 

be a function of the bottom roughness and the velocity profile. For simplicity, a 

constant coefficient K = 5 X 10~5 is used in the model, teh same as that used by 

Zelt (1991). 

At the present, the approach of adding a thin layer of water to the dry 

cell for simulate wave runup does not work to expectation due to the blowup of 

numerical model. The thickness of the thin layer of water is specified as d = 8h0, 

where ho is the seaward still water depth and 8 is a constant number which is 

much less than 1 and is adjustable in the model. From computational results 

prior to the model blowup, large value of 8 (i.e., 0.1) resulted in large downward 

velocity which increases the velocity difference near the shoreline location. On the 

other hand, too small value of 8 (i.e., 0.001) caused strong fluctuation in surface 

elevation on the areas with the thin layer of water. 

Notice that when applying slot-technique for simulating wave runup for the 

extended Boussinesq equations in an Eulerian description, Madsen et al. (1994) 

applied several other techniques in order to make the model operational. There 

techniques include switching off dispersive terms at the still water shoreline, chang- 

ing finite difference scheme from central differences to upwind difference inside 

slots, and introducing explicit numerical filter near still water shoreline. In order 

for our model based on thin layer of water to be operational, it maybe necessary 

to adapt similar techniques. 
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Chapter 5 

RESULTS AND COMPARISONS 

To verify the numerical model described in previous chapters, extensive 

tests have been conducted for a wide range of wave propagation problems. Due 

to the significant differences in model formulation and required operations, both 

1-D and 2-D versions of the numerical model have been developed. Although it is 

possible to apply the 2-D model for the study of 1-D problems, it is recommended 

to use the 1-D program to solve 1-D problems due to savings in computer storage 

and computing time. 

For the 1-D model, we first investigate the evolution of solitary waves in 

constant water depth. Solutions of permanent form corresponding to the model 

equations are obtained after running the numerical model over a flat bottom for 

a relatively long time. The solutions for surface elevation for several height to 

depth ratios are compared with other models to show the importance of high 

order nonlinear terms included in the model equations. 

We then apply the 1-D model to study the shoaling of solitary waves over 

constant slopes and the propagation of undular bores in constant water depth. 

Results from the present model with and without high order nonlinear terms are 

compared with those obtained from the boundary element model (BEM) devel- 

oped by Grilli et al (1989). 
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The shoaling and breaking of a random wave train over a constant slope is 

the next case to be studied using the 1-D version of the present model. Numerical 

results for the time series of surface elevation and the corresponding power spec- 

trum, root mean square wave height, skewness and asymmetry at various location 

along the slope are compared in detail with the experimental data of Mase and 

Kirby (1992). 

For the 2-D version of the model, we first study the evolution of waves in 

a closed rectangular basin. The initial surface elevation is set to be a Gaussian 

shape. From the computed results, we examine the symmetry of surface elevation 

and the conservation property of water volume. For linearized conditions, this 

case admits analytical solutions. We therefore run the model with linear terms 

only and compare numerical results with these exact solutions. 

The 2-D model is then applied to simulate the propagation of monochro- 

matic waves over submerged shoals, corresponding to the experimental studies 

conducted by Berkhoff et al. (1982) and by Chawla (1995). Comparisons of time 

series of surface elevation and variation of wave height between numerical solutions 

and experiment data are presented. 

5.1    Solitary Wave Evolution over Constant Water Depth 

The first case to be studied is the propagation of solitary waves over a long 

distance in constant water depth. This is a good test for the stability and the 

conservative properties of any basic numerical scheme. In order to provide the 

proper initial and boundary conditions to generate the required solitary wave, we 

need to obtain the corresponding analytical solution (exact or approximate) from 

the model equations. 
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Schember (1982) has described a method for obtaining approximate solitary 

wave solutions for the standard Boussinesq equations, which use depth-averaged 

velocity as the dependent variables. First, the velocity variable u was replaced 

with a wave potential <f> in the equations. Then, to the same order of accuracy 

as the Boussinesq equations, an ordinary differential equation for wave potential 

<f> was obtained by eliminating surface elevation 77. The equation of <f> is a fourth- 

order nonlinear ordinary differential equation. Applying initial and boundary 

conditions, a closed-form solution for <j) was obtained, from which the horizon- 

tal velocity u and surface elevation 77 can be determined. Following the same 

procedure, we can obtain the corresponding analytical solution for the extended 

Boussinesq equations of Nwogu (1993), which is the same as the present model 

equations without high order nonlinear terms. Details of the derivation are in- 

cluded in Appendix A. In the following, only results of the approximate solitary 

wave solutions are shown. For Nwogu's extended Boussinesq equations, the cor- 

responding solitary wave solutions are given by 

u   =   Asech2[B{x - Ct)] (5.1) 

77   =   Axsech2[B{x - Ct)} + A2sech4[S(x - Ct)] (5.2) 

where u is the horizontal velocity at depth za = — 0.531 h, 77 is the surface elevation, 

C is the phase speed of the solitary wave which is a function of wave height to water 

depth ratio. Definitions for quantities A, B, C, Ai, A2 are given in Appendix A. 

5.1.1    Evolution of solitary waves 

Using the approximate analytical solutions (5.1) and (5.2) for extended 

Boussinesq equations as initial conditions, we apply the numerical model to in- 

vestigate the propagation of solitary waves in constant water depth. Notice that 

due to small nonlinearity, only weakly nonlinear version of the present model is 
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considered in this section. Both of the weakly and fully nonlinear versions of the 

model will be studied in the next section. The horizontal length for the computing 

domain is chosen to be 450 m and the water depth is 0.45 m, which makes the 

length to depth ratio 1000. Three solitary waves with initial heights H = 0.045 m, 

0.090 m and 0.135 m are used for the test. The corresponding wave height to water 

depth ratios were 8 =0.1, 0.2 and 0.3. 

Figure 5.1 shows the spatial variations of the solitary wave with initial 

8 = 0.1 at various time t = (40, 80, 120, 160, 200 s). The solitary wave is 

generated at the left boundary (x=0) by specifying 7/ and u according to the 

approximate solutions in (5.1) and (5.2). The grid size and the time step used 

here axe Ax = 0.1m and At == 0.02 s, corresponding to a Courant number of 

0.42. Except for the initial deviation in wave height at the start of the channel 

and the formation of a small dispersive tail (not so obviously seen from Figure 5.1 

but illustrated in subsequent figures), the model produced a stable solitary wave 

propagating across the domain. 

Figure 5.2 shows the spatial profiles of a solitary wave with initial 8 = 0.3 

at t = (40, 80, 120, 160, 200 s). The solitary wave crests are clipped off in 

order to accentuate the height of the dispersive tail. Since the propagation speed 

C for the solitary wave is known from the approximate analytical solution, a 

radiation boundary condition (3.98) is used at the right end of the domain. At 

the t = 200 s, the main solitary wave has left the domain without significant 

reflection, indicating the boundary condition worked well. The dispersive tail is 

seen to lag behind the evolved solitary wave, and shows a distinct ordering with 

low frequency waves near the front of the wave train and high frequency waves 

near the back, as would be expected for any dispersive wave train. The amplitude 

of the dispersive tail increases with initial wave height. This result is partially due 
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Figure 5.1: Spatial profiles of the solitary wave with initial 8 = H/h = 0.1 
evolving in a constant water depth of h = 0.45 m. The unit of time 
t is in second. 

to the fact that the fourth order equation used to develop the analytical solution 

is only asymptotically equivalent to the model being solved numerically, so that 

the wave being input at the boundary of the numerical model does not correspond 

exactly to a solitary wave form as predicted by the model. 

To further illustrate the change in solitary wave height between the initial 

specified value and the final stable solution resulting from the model, the spatial 

variation of wave height for all three solitary waves (8 = 0.1, 0.2, 0.3) is shown in 

Figure 5.3. Except for some numerical noise, all three wave heights were stabilized 

after traveling a distance of x/h = 150. Though the difference in wave height 

change is proportional to initial wave height, the distance required for solitary 

wave to reach stable wave height decrease with increasing initial wave height. 
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Figure 5.2: Spatial profiles of solitary wave with 8 — 0.3 evolving in water of 
constant depth h = 0.45 m. The unit of time t is in second. 

The important feature of the numerical solution is that the solitary wave 

evolves out of the initial wave form and then propagates for a long distance (about 

1000 water depths) without undergoing any significant additional damping or 

evolution. This indicates that the numerical code is free of unwanted dissipative 

effects, which would gradually damage the solitary wave form. As indicated in 

Figure 5.3, the solitary wave height predicted by the model is quite stable. 

In Figure 5.4, two numerically predicted wave forms of each of the three 

solitary waves at times t = 40A and t = 160s from the numerical model are 

compared in detail. These wave forms are translated by the analytical phase 

speed C expressed in equation (A.19) in Appendix A for each of the corresponding 

solitary waves. Due to the approximation used in the derivation, the analytical 
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Figure 5.3: Amplitude variations of solitary waves: (a) S = 0.1; (b) S = 0.2; (c) 
8 = 0.3. 

phase speed C is not the same as the numerically predicted value. Figure 5.4 

indicates that the analytical phase speed is somewhat larger than the numerical 

one, in contrast to the fact that the numerical wave height is larger than the 

analytical one. As nonlinearity increases, the discrepancy between analytical and 

numerical phase speeds increases. 

5.1.2    Accuracy of solitary wave with high nonlinearity 

Chapter 1 describes general features of some existing nonlinear long wave 

models. All these models, except for the nonlinear shallow water model, admit 

permanent form solutions (either analytically or numerically) representing a forc- 

ing balance between nonlinearity and dispersion.  Due to different assumptions 
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Figure 5.4: Compaxison of solitary wave shapes at t = 40s ( ) and t = 160s 
(---): (a) 8 = 0.1, (b) 8 = 0.2, and (c) 8 = 0.3. 

made in the derivation of the models, the corresponding permanent wave solu- 

tions are not the same. Certain characteristics of the models will be revealed by 

analyzing their solitary wave solutions with high nonlinearity. 

Utilizing a conformal mapping technique to transform the curved surface 

elevation into a straight line, Tanaka (1986) obtained a closed-form expression for 

the solitary wave from the original wave equations for irrotational, inviscid and 

incompressible fluid. Though a numerical method is required to obtain the final 

results for the close-form expression, Tanaka's solution for the solitary wave is the 

most accurate result to compare with. For certain approximate wave equations 

such as the KdV equation and Serre equations, there exist closed-form solutions 

for permanent waves. For Boussinesq equations, however, no complete analytical 

121 



solutions have been found yet.  Therefore, we have to obtain the corresponding 

permanent solutions numerically from these models. 

Using the approximate expressions (5.1) and (5.2) as inputs, we ran the 

present model with and without high-order nonlinear terms over a constant water 

depth for a long distance. At the beginning of these computations, wave heights 

and wave shapes changed constantly, and small oscillatory tails developed behind 

the main waves as they propagated forward. After running the models for a long 

time, however, the changes of form became negligible and wave shapes stabilized, 

indicating that a numerical permanent-form solitary wave solution corresponding 

to each of the Boussinesq models was obtained. Due to the discrepancy between 

initial and stabilized wave forms, several runs of the models were required to 

obtain a solitary wave with desired height. 

Figure 5.5 shows the computational results from the present model (with 

and without high-order nonlinear dispersive terms) for three high nonlinear soli- 

tary waves (wave height to water depth ratios are S = 0.4, 0.6, 0.8). The corre- 

sponding analytical solution of the Serre equations and the closed-form solution 

of Tanaka (1986) are also included for comparison. 

As shown in Figure 5.5, the results from the present model with high-order 

nonlinear terms (the fully nonlinear Boussinesq model) match very well Tanaka's 

solution for all three solitary waves. The corresponding weakly nonlinear model 

predicted either narrower or wider solitary wave shapes, depending on the wave 

height. The results imply that these high-order nonlinear dispersive terms are 

important for simulating wave propagation with strong nonlinearity. 

Serre equations were derived under the assumption of a uniform variation 

of horizontal velocity with depth (Serre, 1953).   The solitary wave solution to 

122 



Vß 

Figure 5.5: Comparison of solitary wave shapes for 8 = 0.4,0.6,0.8. Taiiaka's 
solution ( ); fully nonlinear Boussinesq model ( ); Nwogu's 
Boussinesq model ( ); closed-form solution of Serre's equations 

Serre equations was given by Su and Gardner (1969), and by Seabra-Santos et al. 

(1987) who also extended Serre equations to variable water depth. In contrast to 

the standard derivation of Boussinesq equations or KdV equations, no assumption 

of small nonlinearity was made in deriving Serre equations. However, as shown in 

Figure 5.5, the corresponding solitary wave solutions to Serre equations are much 

wider in shape compared with Tanaka's solutions. The result indicates that the 

assumption of uniform horizontal velocity with depth is not accurate for solitary 

waves with high nonlinearity. 
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As described in Chapter 1, Serre equations are exactly the same as the cor- 

rection equations to shallow water theory by Su and Gardner (1969), and the same 

as the fully nonlinear standard Boussinesq equations (using the depth-averaged 

velocity as the dependent variable) by Mei (1989). Comparisons from Figure 5.5 

also indicate that the present model is superior to the standard Boussinesq model, 

not only for linear dispersion in intermediate water depth but also for high-order 

nonlinear interaction. 

5.2    Solitary Wave Shoaling Over Constant Slopes 

After studying the evolution of solitary wave over constant water depth, the 

next natural step is to investigate the propagation of solitary waves over constant 

slopes. The solitary wave example is a good test for the model in that it allows 

for a careful test of the propagation speed of an isolated pulse in the absence of 

any extra noise sources (such as wave reflection). In addition, the wave height 

to water depth ratios reached prior to breaking are higher than for most periodic 

incident waves, and thus a more severe test is made of the nonlinear portion of 

the model. 

In this section, we apply the present model with and without high-order 

nonlinear terms to simulate solitary wave propagation over four constant slopes. 

For each slope, three solitary waves with initial wave height to water depth ratios 

8 between 0.2 to 0.6 are used as model inputs. Results of wave shapes, wave 

heights, wave celerities and vertical variation of horizontal velocity are compared 

in detail with those obtained from the boundary element model developed by Grilli 

et al. (1989). Since the boundary element model solves the exact boundary value 

problem (2.6)-(2.9) for potential flow, we refer to the model to as fully nonlinear 

potential flow (FNPF) model.   For convenience of comparison, we refer to the 
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present model with and without high order nonlinear terms to as fully nonlinear 

Boussinesq model (FNBM) and Boussinesq model (BM), respectively. 

As shown by Grilli et al. (1994), numerical results from FNPF model were 

quite accurate compared with laboratory data. For solitary wave shoaling over a 

1/35 slope, they showed that surface elevations could be calculated to within 1% 

of the measurements, up to and beyond the theoretical breaking point for which 

the wave has a vertical tangent on the front face. Therefore, results from the 

FNPF model serve as accurate data for comparison. 

Figure 5.6 shows the computational domain for the study of solitary wave 

shoaling. Constant water depths of h0 and hs are on both ends connected by a 

constant sloping beach with slope s. Coordinates were set such that the toe of 

the slope correspond to x = 0. For FNBM and BM models, solitary waves were 

generated at the leftward boundary and propagated to the right. The four slopes 

are s=l:100, 1:35, 1:15 and 1:8, which should cover all natural beaches from gentle 

to steep. For each slope, the incident wave height is varied from 8 = 0.2 to 6 = 0.6, 

which corresponds to a variation from weak to strong nonlinearity. Dimensionless 

variables are used for showing computing results, with the use of h0, ■Jho/g and 

y/gho to scale the corresponding length, time, and velocity variables. The resulting 

dimensionless variables are denoted by primes. 

The permanent form solitary wave solution obtained for the same initial 

height in the three models is different due to different levels of approximation in 

the equations. In the FNPF computations, an exact solution of the fully nonlinear 

equations, obtained using Tanaka's (1986) method, was used as an initial wave and 

introduced directly on the free surface. For FNBM and BM, however, numerical 

experiments were performed to obtain the corresponding solitary wave solutions to 

be used as model inputs. The detailed method for obtaining the solitary wave with 
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Figure 5.6: Definition sketch for both the FNPF computations and for the 
Boussinesq models. 

the required wave height and comparison of the stable solution forms have been 

described in the previous section. To account for the slight difference in solitary 

wave solutions for constant depth in the three models, results of computations 

were synchronized at t' = 0, taken to be the time when wave crests reached the 

toe of the slope, x' — 0. A comparison of evolving solitary wave profiles obtained 

in the three models is shown in Figure 5.7. The four plots, (a), (b), (c) and (d) 

correspond to slopes of 1:100, 1:35, 1:15, and 1:8, respectively. The initial wave 

heights are S = 0.2 for (a), (b) and (d) but 8 = 0.3 for (c). The first profile to the 

left in each plot corresponds to the waves being at a location roughly half way up 

the slope. Wave asymmetry is not too pronounced yet, and one can see that both 

Boussinesq solutions agree quite well with the FNPF solution. The last profile in 

Figure 5.7 (a), (b), and (c) corresponds to the theoretical breaking points in the 

FNPF computations, for which the wave has a vertical tangent on the front face. 

No breaking occurs for the condition in Figure 5.7 (d). Breaking occurs in Figure 
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5.7(b) for t' = 25.94 at x'b = 25.90, and with a breaking index Hb/hb = 1.402. 

This breaking point was found by Grilli et al. (1994) to also closely correspond 

to measured breaking locations and characteristics in well controlled laboratory 

experiments. 

Results in Figure 5.7 show that, with both the BM and the FNBM models, 

the wave crests travel almost at the right speed in the early shoaling. For the 

s = 1 : 100 slope, the BM and FNBM wave crests continue to grow in height 

while the FNPF pitches forward and decreases in height just prior to breaking. 

The results for the FNPF and FNBM model differ most in this case. For the 

steeper beaches, the FNBM predicts both the wave height and crest position with 

much greater accuracy than the BM model. The BM results on the three mildest 

slopes indicate that the wave significantly overpredict as compared to the FNPF 

results, particularly in the upper slope region, and a spurious secondary trough is 

predicted behind the main crest. With the FNBM, however, overshoaling is much 

less pronounced, and the spurious troughs are almost non-existent. 

Results for the relative wave height, H/h, computed with all three models, 

are given in Figure 5.8 as a function of x'. Symbols (o) denote the FNPF breaking 

point, determined by the x' location where the wave reaches a vertical tangent 

on the front face. One can see that, as expected from above, relative wave height 

is significantly overpredicted at the breaking point in the BM, whereas little or 

no overprediction occurs in the FNBM. Beyond the theoretical breaking point, 

wave heights grow in an unbounded fashion in both Boussinesq models. Figure 

5.8 also shows that, with the BM, overshoaling mostly occurs in the region of 

high nonlinearity (i.e., high H/h) closer to the breaking point. This is due to 

insufficient nonlinear effects included in the BM equations; much of the error is 

eliminated in the FNBM. 
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Figure 5.7: Comparison of surface elevations for the shoaling of solitary waves 
between FNPF ( ), BM (----), and FNBM (-•-•). 
(a) s=l:100, 6=0.2, (ti,*3,*3,t4)=(39.982, 53.191, 61.131, 66.890); 
(b) 5=1:35, 6=0.2, (<i,<2,*3,*4)=(16.243, 20.640, 24.032, 25.936); 
(c) s=l:15, 6=0.3, (ti,*2,*3,*4)=(3.230, 6.000, 8.401, 11.320); 
(d) «=1:8, 6=0.2, (ti,t2,*3,*4)=(-0.739, 2.575, 5.576, 6.833); 
The last FNPF profiles in (a), (b) and (c) correspond to the theo- 
retical breaking point for which the wave front face has a vertical 
tangent. 
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Figure 5.8: Comparison of shoaling rates, H/h, for solitary waves between FNPF 
( ), BM (----), and FNBM (-•-•)• 
(a) s=l:100, 8= (0.20, 0.40, 0.60) for (A, B, C); 
(b) 5=1:35, 8= (0.20, 0.40, 0.60) for (A, B, C); 
(c) 5=1:15, 8= (0.30, 0.45, 0.60) for (A, B, C); 
(d) 5=1:8, 8= (0.20, 0.40, 0.60) for (A, B, C); 
Symbols (o) denote locations of the breaking point for which the 
wave has a vertical tangent on the front face. 
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Wave celerities were calculated for three incident wave heights, for each 

slope, using all three models. First, we obtained the time series of the crest 

location x'c. Then three point finite differencing was applied to compute the crest 

celerity c'c. The estimation of the celerity values from the Boussinesq models 

was fairly straightforward, and the results are well represented by an 11-point 

running average fit to the values of c'c. For the FNPF model, the celerity estimates 

exhibited a great deal of jitter, and also exhibited a much more complex functional 

dependence on x' due to the rapid change of the wave crest at and just beyond 

the breaking point. For this model, results are presented in terms of a 25th- 

order polynomial fit to the original raw data. All data processing was done using 

Matlab. 

j 

Results are reported in Figure 5.9 for the crest celerity dc = ~ffl\fghö, 

as a function of crest location x'c. The corresponding incident wave celerity c£, is 

almost identical in all three models. Results show that both Boussinesq models 

slightly underpredict the wave crest celerity as compared to the FNPF results for 

most of the shoaling process, with a larger discrepancy close to the breaking point. 

This was already observed in Figure 5.7. 

Particle velocity at the crest is defined as V£ = Ju? + w'*, where u'c and w'c 

are the horizontal and vertical velocity components. The comparison of V'c for all 

three models is shown in Figure 5.10(a), (b), (d) for 6 = 0.2 and in Figure 5.10(c) 

for 8 = 0.3, where the corresponding crest celerities have also been reproduced 

from Figure 5.10. The FNPF model predicts, as expected, that V'c > dc at breaking 

on the three milder slopes (in fact slightly beyond the breaking point). The 

particle velocity at the crest in the BM starts diverging from the FNPF solution 

about half way up the slope and becomes quite large. This result is due to the 

overshoaling in the BM wave and the resulting overprediction of downward crest 
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Figure 5.9: Comparison of crest celerity dc for the same solitary waves between 
FNPF (- ), BM (—-), and FNBM (-•-•)• Legends for the plots 
are the same as the previous Figure. 
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curvature. In contrast, the particle velocity in the FNBM stays quite close to 

the FNPF prediction up to the breaking point for all but the gentlest slopes. In 

fact, despite the discrepancies at breaking in the FNBM, V'c = c'c (i.e., breaking) 

roughly occurs at the same location as in the FNPF model. 

Vertical profiles of horizontal velocity at three different locations are shown 

in Figure 5.11 for the case of 1:35 slope and wave height 6 — 0.2. In the Boussinesq 

models, the horizontal velocity at a certain depth z = za = — 0.531/i, is determined 

by the model and the corresponding derivatives are computed. Then the variation 

of horizontal and vertical velocity with water depth z is given by 

z2 -z2 

u   =   ua + -2——(ua)xx + (za - z)(hua)xx (5.3) 

w   =   —(h + z)(ua)x — hxua (5.4) 

Generally, the velocity profiles of FNBM compare quite well with those 

of FNPF. The FNBM predict average, surface and bottom velocities reasonably 

accurately, the main discrepancy being the underprediction of profile curvature 

owing to the limitation of the quadratic velocity profile used in the model formu- 

lation. Most notably, the prediction of the kinematics retains its accuracy up to 

the wave breakpoint. 

The comparison of velocity profiles between BM and FNPF are less sat- 

isfactory. The combined effects of incorrectly predicted values of ua and the 

overprediction of wave heights and crest curvature in the BM result in larger hor- 

izontal velocities, especially at the crest. Horizontal velocities are overpredicted 

by almost 50% over much of the final stage of shoaling in the BM. 
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Figure 5.10: Comparison of wave crest celerity dc and particle velocity V'c at 
the crest between FNPF ( ), BM ( ), and FNBM (-•-•). 
Legends are the same as the previous Figure. 
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Figure 5.11: Comparison of horizontal velocity profiles between FNPF ( ), 
BM (----), and FNBM (-•-•). The initial wave height is 8 = 0.2 
and the slope is s = 1 : 35. The location for obtaining velocity 
profiles are at: (a) x' = 20.96; (b) x' = 23.63; (c) x' = 25.91. 
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5.3    Undular Bore Propagation 

When an undular bore propagates into a still water area with constant 

depth, waves will be generated and propagate out of the bore front. This problem 

has been studied by a number of investigators and serves as a standard illustration 

of competing effects of dispersion and nonlinearity. Peregrine (1966) compared 

the differences between Boussinesq theory and Airy's theory for nonlinear long 

waves using this example. While results from a Boussinesq model showed wave 

generation and propagation, results based on Airy's theory only indicated the 

steepening of the bore front. In this section, we apply the Boussinesq models 

(FNBM and BM) to study this problem and compare results with those obtained 

from FNPF model. 

As shown in Figure 5.12, the initial conditions for an undular bore is a 

gentle transition between a uniform flow on the left end and still water on the 

right, which is defined: 

u   ~   9Uo[l - tanh(s/a)] (5.5) 

7/   =   u + -u2 (5.6) 

where r\ and u are the surface elevation and the horizontal velocity, x is the hori- 

zontal coordinate with x = 0 corresponding to the center of the initial bore, tt0 is 

the velocity of uniform flow from the left boundary, and a is a number sufficiently 

large that the initial motion could be described by Airy's theory (Peregrine, 1966). 

In all the computation below, we use a = 5. Three different values of u0 are chosen 

so that the initial heights at the left boundary are 6 = T)0/h0 = 0.1,0.2,0.3. Due to 

the presence of vertical acceleration in the transition region between the two uni- 

form depth asymptotes, waves are generated from the initial smooth transition in 

models incorporating dispersive effects. The number and height of waves increases 

gradually with time, until a nearly uniform cnoidal wave train is developed. 
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Figure 5.12: Initial conditions for an undular bore. 

To compute the evolution of the undular bore, the initial solutions of TJ and 

u in expressions (5.5) and (5.6) are introduced as the initial conditions for FNBM 

and BM. For the FNPF model, the corresponding initial free surface potential 

(j>(x) is obtained by integrating u(x) as a function of x and the initial normal 

velocity g^(^) is obtained by projecting u{x) on the normal direction. 

Figures 5.13 and 5.14 show the comparison of wave profiles at different 

times. For small values of 8 as in plot (a) results from BM and FNBM are very 

close, indicating that the effects of the higher order nonlinear terms in FNBM are 

negligible for small nonlinearity. For large values of S as in (b) and (c), however, 

the wave heights predicted by BM are larger than those predicted by FNBM, 

and the predictions of the FNBM agree more closely with the FNPF model. In 

addition, the wave crest speeds predicted by FNBM are closer to FNPF model 

results than are those predicted by BM for all wave crests in the evolving wave 

train. 

In Figure 5.15, we plot the elevations of the first three wave crests and 

wave troughs as a function of distance traveled for the same three conditions as in 
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Figure 5.13: Comparison of free surface elevations for undular bores between 
FNPF ( ), BM (-—), and FNBM (-•-•).   The initial wave 
heights are: (a) 8 = 0.10; (b) 8 = 0.20; and (c) 8 = 0.30. The 
dimensionless time are at t' = {ti,t2,tz,U,U,t6,t7) = (10, 20, 30, 
40, 50, 60, 70). 
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Figure 5.14: Comparison of free surface elevations for undular bores between 
FNPF ( ), BM (---), and FNBM (-•-•)•   Legends are the 
same as previous Figure. 
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Figures 5.13 and 5.14. We see that, in general, both crest elevations and trough 

depths increase with time, as was noted by Peregrine (1966) and other investiga- 

tors. For small nonlinearity (Figure 5.14a), results from BM are similar to those 

of FNBM, and both Boussinesq models overpredict wave height compared to the 

FNPF model. However, for large nonlinearity, the FNBM does a reasonable job of 

predicting the height of the leading wave crest and an excellent job of predicting 

the subsequent crests and troughs, compared to the FNPF. The wave heights from 

BM are no longer close to those of FNBM, indicating that the additional nonlinear 

terms in FNBM are important for this case. The wave crests and troughs from 

FNBM compare quite well with the predictions of the FNPF. 

5.4    Random Wave Propagation Over a Slope 

To study random wave shoaling and breaking, Mase and Kirby (1992) 

conducted a laboratory experiment on random wave propagation over a planar 

beach. Figure 5.16 shows the experiment layout, where a constant depth on the 

left connects to a constant slope on the right. Two sets of random waves with peak 

frequencies 0.6Hz (runl) and 1.0Hz (run2) are generated by a wavemaker on the 

left end and propagate through the fiat bottom and then over the slope. Starting 

at the toe, 12 wave gages are deployed along the slope at locations whose water 

depths are h = 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, 2.5 cm. Time series of 

surface elevation n at these locations are collected simultaneously for about 14.7 

minutes for runl and 12.5 minutes for run2. 

The experiment was conducted in a narrow wave tank so that the 1-D 

numerical model is sufficient to apply to this case. The values of kh corresponding 

to peak frequencies at water depth h = 47 cm are about 0.9 for runl and 2.0 for 

runl. Though applicable to the case of runl, standard Boussinesq equations are 
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Figure 5.15: Comparison of wave crests and troughs between FNPF ( ), BM 
( ), and FNBM ( ). The initial wave height to water depth 
ratios are: (a) 8 = 0.10; (b) 8 = 0.20; and (c) 8 = 0.30. Cj, C2 and 
C3 represent the first, second and third wave crests, 7\, T2 and T3 

represent the first, second and third wave troughs. 
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Figure 5.16: Experiment layout of Mase & Kirby (1992). 

not valid for the case of runl due to large kh value. However, with improved 

linear dispersion properties in intermediate water depth, the present Boussinesq 

model should be valid for both cases. In the following, the model will be applied 

to simulate the propagation of random waves corresponding to the case of run2. 

Due to the lack of data near the wavemaker and along the region of constant 

water depth, the computing domain is different from the physical domain. The 

center of the source region for generating the required random waves in the model 

is set at the toe of the slope where measured data is available. The shoreline 

boundary at the high end of the slope is replaced by a constant water depth of 

2 cm at the right end of the domain. Sponge layers are added at both ends of the 

domain to absorb wave energy. The grid size is chosen as Ax = 0.025 m and the 

time step is At = 0.02 s, resulting in a Courant number of 1.72 corresponding to 

a depth of h = 0.47 m. 

As described in Chapter 3, it is possible for the present model to choose 
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four different sets of governing equations by changing certain control parame- 

ters. These four sets of equations are nonlinear shallow water equations, standard 

Boussinesq equation, Nwogu's extended Boussinesq equations, and fully nonlinear 

Boussinesq equations. Keeping the same numerical scheme and boundary condi- 

tions, we will be able compare the characteristics of these four models for the 

simulation of random waves. 

Figure 5.17 shows the time series comparison for surface elevation rj be- 

tween three Boussinesq models, i.e. Nwogu's extended Boussinesq model, the 

fully nonlinear Boussinesq model, and the standard Boussinesq model. For il- 

lustration purpose, only the time series obtained at the depth h = 35 cm are 

shown. The numerical results are indicated by dashed lines and experiment data 

by solid lines. With improved linear dispersion property in intermediate water 

depth, results from the extended Boussinesq model and the fully nonlinear model 

are in good agreement with the data. The small difference between these two 

Boussinesq models indicate that those high-order nonlinear terms in fully nonlin- 

ear Boussinesq equations have less effect on wave transformation at this location. 

Results from the standard Boussinesq model, however, match experiment data 

quite poorly, in both amplitude and phase, indicating that the standard Boussi- 

nesq model is not valid for this case due to large value of kh. 

For the extended Boussinesq model, we obtained the corresponding time 

series of surface elevation rj at the same locations as those 11 wave gages (deployed 

at the depths fc=35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, 2.5 cm) from which 

experiment data were collected. Figure 5.18 shows the comparison of rj from 

t = 20s to t = 405 between the model results and the experiment data at those 

gages. Notice that the data from the first gage (at h = 47 cm) was used as the 

input for the model to generate the corresponding time series of source function. 
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Figure 5.17: Time series comparison of »7 between three different Boussinesq 
models ( ) and data ( ) at h = 35 cm: (a) Nwogu's extended 
Boussinesq model; (b) fully nonlinear Boussinesq model; and (c) 
standard Boussinesq model. 

Due to the inclusion of source function inside the source region, it is meaningless 

to compare the surface elevation obtained from the model with data for this gage. 

In the model, the actual shoreline condition was replaced by a sponge layer with 

constant water depth of 2 cm. From the model results, the sponge layer effectively 

absorbed wave energy and reduced possible wave reflection from the boundary 

back to the domain. Despite the difference in the setting for the physical and 

computing domains, surface elevations obtained from the model agree quite well 

with experimental data. 

In the experiment, most of the waves started breaking at the depth h = 
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Figure 5.18: Comparison of time series of 7/ between model ( ) and data (— 
-) at 11 wave gage locations: (a) h = 2.5 cm; (b) h = 5 cm; (c) 
h = 7.5 cm; (d) h = 10 cm; (e) h = 12.5 cm; (f) h = 15 cm; (g) 
h = 17.5 cm; (h) h = 20 cm; (i) h = 25 cm; (j) h = 30cm; and (k) 
h = 35 cm. 
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15 cm. To simulate wave breaking, the corresponding eddy viscosity terms de- 

scribed in Chapter 4 were turned on in the numerical model when computed wave 

properties exceed the breaking criteria. The eddy viscosity terms are quite lo- 

calized and generate high frequency noises which will eventually cause stability 

problem for the model. To solve this problem, more frequent use of numerical 

filtering was employed in the model. This was accomplished first by recording the 

number of time step when wave breaking occurs. Then the 9 point filtering for- 

mula (3.124) was applied to filter surface elevation and horizontal velocity every 

50 time steps when wave breaking happens, in addition to the regular filtering for 

every 100 time steps. With this additional numerical filtering, the model was able 

to run for the entire time series of data without any stability problem. A sample 

of time series comparison for surface elevations between the model and data are 

shown in Figure 5.19, which is corresponding to time interval from t = 620 s to 

t = 6405. Comparisons for other data segments between the model results and 

the experiment data are as good as those in Figures 5.18 and 5.19. 

Instead of comparing the time series of surface elevation obtained from the 

model and the experiment at each time interval, it is more practical to compute 

the statistical properties from these time series. In the experiment, the data was 

collected after the generated random waves have propagated through the domain. 

In the model, however, the initial conditions for surface elevation and velocity 

are all set to zero. For meaningful comparison between the model and the data, 

the first 20 seconds of model results and data must be discarded. Due to the use 

of FFT in the model to compute the source function, the last portion of data 

for about 33 seconds was cut off in the model computation. Therefore, the total 

length of data for statistical calculation between model and data is about 11.5 

minutes. 
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Figure 5.19: Comparison of time series of 77 between model ( ) and data (— 
-) at 11 wave gage locations: (a) h = 2.5 cm; (b) h = 5 cm; (c) 
h = 7.5 cm; (d) h = 10 cm; (e) h = 12.5 cm; (f) h = 15 cm; (g) 
h = 17.5 cm; (h) h = 20cm; (i) h = 25cm; (j) h = 30 cm; and (k) 
h = 35 cm. 
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Figure 5.20 shows the comparison of statistical properties between the 

model and data. The standard deviation a, as shown in Figure 5.20(a), is straight- 

forward to compute from the corresponding sets of data after the removal of the 

mean. One of the important statistical property for a random wave train is the 

root mean square wave height Hrms, which is closely related to standard deviation 

of surface elevation. For random waves with Rayleigh distribution, the relation 

between the root mean square wave height and standard deviation can be ap- 

proximated by Hrms = y/Ea. Figure 5.20(a) shows that wave height decreases 

gradually from h - 47 cm to h = 10 cm due to shoaling and then drops abruptly, 

indicating that wave breaking occurs around h — 10 cm. 

The corresponding third moment statistics from the data are also computed 

and shown in Figure 5.20 (b). The skewness and the asymmetry are two quan- 

titative measurements for the irregularity of the shape of a wave train compared 

to a sinusoidal wave train. As waves approach shallow water areas, wave shapes 

change accordingly due to shoaling and nonlinear interaction. One change is that 

wave crests become narrower and higher while wave troughs become broader and 

flatter. This change is measured by the quantity of skewness. The other change is 

that the front face of a wave tends to steepen while its back face remains more or 

less the same. This change is indicated by the quantity of asymmetry. For a given 

time series of surface elevation rj(t), the normalized skewness and asymmetry are 

defined as 

skew   =       Wy * (5.7) 

,31 

asym   =       *y (5.8) 
a 

where E is the expectation value, a is the standard deviation of rj(t), and £(t) is 

the Hubert transform of — rj(t). 
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As shown Figure 5.20 (6), skewness increases rather evenly from h = il cm 

to h = 10 cm and then decreases. The corresponding asymmetry, on the other 

hand, remains almost unchanged from h = 47 cm to h = 20 cm and then in- 

creases sharply all the way to h — 2.5 cm. For the entire range of water depth 

which includes both the shoaling zone and the breaking zone, the model results 

agree quite well with the experimental data, except in the very shallow water. 

For modeling sediment transport, the third moment statistics of skewness and 

asymmetry are important to accurately compute the corresponding forcing and 

transport rate. Good agreement of skewness and asymmetry between the model 

and data indicates that the model could be used for sediment transport modeling. 

Figure 5.21 shows the comparisons of power spectrum between the model 

and the data for various wave gage locations. Notice that the time step used in 

the model (0.023) is not the same as that in the data (0.05 s). In order to use 

the same number of point for computing the corresponding power spectrum of 

surface elevation -q by FFT, new time series of 77 with time step 0.05 s were first 

obtained from the model results by the method of interpolation. The final number 

of points used for the computation of power spectrum is 13824 and is divided into 

27 segments for averaging. Each of the segments has 512 points of data (25.6 s). 

Around the peak frequency / = 1.0 Hz, the model spectrum matches quite 

well with the data spectrum for most of gage locations except for the last one 

at h = 2.5 cm. Over the frequency range from / = 2.5 Hz to / = 5.0 Hz, the 

model spectrum is somehow smaller than the data spectrum. The reason maybe 

due to the use of numerical filtering in the model. As described in Chapter 

3, a numerical filter can effectively eliminate high frequency wave components. 

However, the filter also decreases the energy of certain short waves. In addition, 

the present model, though valid for intermediate water depth (about kh = 3), is 
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Figure 5.21: Comparison of power spectrum between model ( ) and data 
( ) at 11 wave gage locations: (a) h = 2.5 cm; (b) h = 5 cm; (c) 
h = 7.5 cm; (d) h = 10 cm; (e) h = 12.5 cm; (f) h = 15 cm; (g) 
h = 17.5 cm; (h) h = 20 cm; (i) h = 25 cm; (j) h = 30 cm; and (k) 
h = 35 cm. 
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still not applicable for these high frequency waves whose kh values are quite large 

(kh = 7 for / = 2.0 Hz). Figure 5.21 also shows that the model overpredicted 

the data for low frequency motion around / = 0.2 Hz. This maybe due to the 

facts that the modeling domain is shorter than the physical domain, and that the 

shoreline condition in the experiment was replaced by a sponge layer of constant 

water depth. 

5.5    Wave Evolution in a Rectangular Basin 

Previous sections describe the simulation of 1-D wave propagation by the 1- 

D version of the present model. In this and subsequent sections, the corresponding 

2-D model will be used to investigate wave propagation in 2-D cases. 

The 2-D model equations include many more extra terms, some of which 

are mixed derivatives in x and y directions. The complexity of the 2-D equations 

requires careful programming and objective tests to eliminate possible coding 

errors. One simple yet efficient testing case used for 2-D model was the evolution 

of waves in a rectangular basin bounded by four vertical side walls. 

Figure 5.22 shows a definition sketch of the basin used in the test. The 

origin of the coordinates is set to be at the left and bottom corner of the basin, 

with x and y axis coinciding with the corresponding side walls. The basin di- 

mensions are Lx = 10 m and Ly = 10 m, and the water depth is 0.5 m constant 

over the basin. The initial condition to the model is provided by a motionless 

Gaussian hump of water with its center align at the center of the basin (xc,yc). 

For convenience, a new set of coordinates (x', y') is defined, with its the origin at 

(xc,yc) and directions the same as the coordinates (x,y). 

Due to gravitational forcing, the center of the Gaussian hump of water goes 
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Figure 5.22: Coordinate definition of rectangular basin. 

down first and then goes up. As this process repeats, waves are generated at the 

center and propagate out. These waves are then reflected back to the domain once 

reaching the vertical side walls. Since energy dissipation terms are not added for 

this case, waves will propagate inside the domain for as long as the model runs. 

Though there are no corresponding nonlinear analytical solutions or experimental 

data to compare with, the resulting surface elevation should be symmetric about 

x' and y' axis, due to symmetric boundary and initial conditions. Since no water 

is allowed to escape from the basin, the total water volume inside the domain 

should also be conserved. The symmetry and conservative properties will be used 

to examine the corresponding results obtained from the model. 

The initial conditions for the Gaussian hump of water are defined as 

V(x,y,t = 0)   =   H0exp[-ß[(x-xc)2 + (y-yc)
2]] (5.9) 
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u(x,y,t = 0)   =   0 (5.10) 

v(x,y,i = 0)   =   0 (5.11) 

where H0 is the initial height of the hump, ß is the shape coefficient which controls 

the width of the hump, and (xc, yc) is the coordinate at the center of the domain. 

For simplicity, we assume (5.9)-(5.11) to be the values for all three initial time 

steps. In the testing case shown here, we chose H0 = 0.2 m, ß = 0.4, and xc = yc = 

5 m. The grid size are specified as Ax = Ay = 0.1 m and time step is At = 0.02 s. 

To eliminate short waves generated from nonlinear interaction, numerical filtering 

is applied every 100 time steps. 

Contour plots of surface elevations obtained from the present model with 

weak nonlinearity at various times are shown in Figure 5.23. The symmetry 

of rf about the x' and y' axes is apparent, indicating that the finite difference 

scheme used in the model to discretize the corresponding mixed derivative terms 

is consistent for both x and y directions. 

To verify the property of conserving water mass inside the domain, we 

apply the following approximate formula in the numerical model to compute the 

water volume V(t) at any time t 
j M-1,N-1 

V(t) = -AxAy    £    (^• + ^1,i + C+1 + ^1J+1) (5.12) 
t=i,i=i 

where i and j are the grid index in x and y directions which are related to the 

coordinates x and y as x = (i - l)Ax and y = (j - l)Ay, n is time step index 

which is related to time t as t = (n - l)At, Ax and Ay are the grid sizes in x and 

y directions and At is the time step, M and N are total numbers of grid points 

in x and y, respectively. The relative error E(t) for water volume at any time t 

compared to its initial value is given by 
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Figure 5.23: Contour plots of surface elevation at time (a) t=0; (b) t=10; (c) 
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Since the present model is capable of choosing four different sets of gov- 

erning equations to simulate wave propagation, we run the model for these four 

cases and obtained the corresponding time series of E, which are shown in Figure 

5.24. The results from the nonlinear shallow water model are not shown since the 

model blew up at around t = 23 s. The boundary conditions used in all three 

Boussinesq models are same, i.e., zero normal velocity and zero normal deriva- 

tives of surface elevation and tangential velocity. Results in Figure 5.24 indicate 

that the water volumes inside the domain computed from the three Boussinesq 

models are almost constant, within 1% relative error. Of these three models, 

the standard Boussinesq model gave the most accurate result. The reason is that 

depth-averaged velocity is used as the dependent variables in the standard Boussi- 

nesq equations. Specifying the normal velocity at the wall boundary to be zero is 

the exact boundary condition to conserve mass inside the domain. For Nwogu's 

Boussinesq model or the fully nonlinear Boussinesq model, the dependent variable 

is velocity at the water depth za = -0.531 h. Specifying zero normal velocity and 

zero normal derivatives of surface elevation and tangent velocity is only accurate 

within the model approximation. 

If nonlinearity is negligible, linear analytical solution to this problem can 

be obtained by using a standard Fourier transform method. For simplicity we 

assume a square domain, i.e. Lx- Ly - L. Then the transform coefficients for 

Fourier components are determined from the initial conditions TJ0(X, y) by 

^ = (l + 6no)(l + 6m0)LxLy Li Llu 
Vo{x>y) C°<nXx>> cos(mXv)^y (5-14) 

where (n, m) denotes different linear modes for waves in the domain, Snm is the 

Kronecker delta function, and A = j-. The natural frequency for mode (n, m) is 

given by the exact linear dispersion relation 

ulm = sKm tanh(fcnm h0) (5.15) 
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Figure 5.24: Time series comparison of relative error for total water volume 
inside the domain: Nwogu's Boussinesq model ( ) ; the standard 
Boussinesq model ( ); and the fully nonlinear Boussinesq model 

where wavenumber knm is denned as 

*L = («A)2 + (mA)2 = g) 2 (n2 + m2) (5.16) 

The corresponding linear analytical solution is 

oo     oo 

T](x, y, 0 = S S We"iwhm* cos(nAx) cos(mAy) (5.17) 

where it is understood that only the real part of the solution is used. 

By setting all nonlinear terms into zero, we obtained two linearized nu- 

merical models based on standard Boussinesq equations and Nwogu's Boussinesq 

equations. The time series comparison of surface elevation between the analyt- 

ical solution and the two linearized numerical models are shown in Figure 5.25, 

where surface elevation at the center point and at the corner point are plotted. 

The overall comparisons between three solutions are quite good, for both wave 

height and wave phase. However, the comparisons of the results from Nwogu's 

Boussinesq model with the analytical solutions is much better than those from 

standard Boussinesq model, as evident by the fact that there is almost no visible 
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difference between the dashed line and the solid line, while the dotted line exhibits 

discrepancy with the solid line. 
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Figure 5.25: Time series comparison of surface elevations between linear ana- 
lytical solution ( ), linearized Nwogu's Boussinesq model ( ), 
and linearized standard Boussinesq model ( ): (a) location at 
center (xc,yc); and (b) location at the corner (0, 0). 

The discrepancy between the two linearized models is due to the effect of 

errors in the higher frequency portion of the solution, which contributes relatively 

little variance to the overall surface record. The theoretical natural frequencies 

corresponding to the two linearized models are given by the linear dispersion 

relation 

«nm " 9Kmho 1 _ a{knmho)2 (5.18) 

where knm wavenumber for mode (n,m) defined by (5.16), and a = —0.390 for 

Nwogu's model and a = —1/3 for standard Boussinesq model. Figure 5.26 shows 
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the ratios of the Boussinesq natural frequency to the exact natural frequency 

over the corresponding mode numbers which are represented in the analytic and 

numerical solutions. The ratio of natural frequency from Nwogu's model to an- 

alytical solution for the first 10 modes in each direction is quite close to 1, with 

the errors in the ratio less than 1%. For the same range of modes, the ratio of 

frequency from standard Boussinesq model to analytical solution is close to 0.95, 

and the corresponding errors are on the order of 5%. Results from Figure 5.26 

indicate that Nwogu's Boussinesq model is a better representation than standard 

Boussinesq model for simulating high frequency modes. 

Figure 5.26: Ratios of linearized Boussinesq models natural frequencies to exact 
natural frequencies for the range of mode numbers considered in the 
analytic and numerical solution: (a) Nwogu's Boussinesq model; 
(b) standard Boussinesq model. 

5.6    Monochromatic Wave Propagation Over Shoals 

To study wave refraction and diffraction patterns and to verify numerical 

models, laboratory experiments have been conducted in the past by a number of 
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investigators. The most commonly used bottom geometry for laboratory studies 

consists a submerged shoal seated on a flat or sloping bottom. In this section, the 

numerical model is applied to simulate two experiments on wave propagation over 

shoals. Comparisons between computed results and experimental data are made 

in detail. 

5.6.1    Case 1: experiment of BerkhofF et al. (1982) 

The experiment conducted by Berkhoff et al. (1982) has served for a num- 

ber of years as a standard test for verifying models based on the mild slope equa- 

tion. Accurate reproduction of the measured wave heights by numerical models 

for this experiment depends on a number of factors, including how the model 

simulates the effects of shoaling, refraction, diffraction, and nonlinear interaction. 

Though the mild slope model is able to solve the combined refraction-diffraction 

problem, there are no nonlinear interaction terms included in the equation. Using 

a third-order Stokes wave dispersion, Kirby and Dalrymple (1984) demonstrated 

that nonlinearity plays an important role in the accuracy of simulating wave shoal- 

ing for this particular experiment. 

Due to large kh values in the experiment (kh = 1.9 near wavemaker), mod- 

els based on nonlinear shallow water equations or standard Boussinesq equations 

are not appropriate to use in this situation, as has been demonstrated in section 

5.4 when applying these invalid models to simulate the propagation of the random 

wave train run2 of Mase and Kirby (1992). However, the present model based on 

Nwogu's extended Boussinesq equations or the fully nonlinear Boussinesq equa- 

tions can be applied to this case and the model results compare quite accurately 

with the experiment data. 

The experimental geometry and the transects for collecting wave data are 
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shown schematically in Figure 5.27. Notice the non-standard coordinate system 

for this case where y axis is the wave propagation direction. Monochromatic 

waves with period 1 s and amplitude 2.32 cm are generated by a wavemaker at 

y = —10 m. The remaining computational domain includes two side walls (which 

are located at x = —10 m and x = 10 m) and an absorbing boundary at y = 12 m. 

The bottom bathymetry consists of an elliptic shoal resting on a plane beach 

with a constant slope of 1/50. The bottom contours on the slope are oriented 

at an angle of 20° to the x - axis. The slope is described by h = 0.45 m if 

y' < -5.82 m and h = 0.45 m - 0.02(5.82 + y') m if y' > -5.82 m. The boundary 

of the shoal is given by (x'/A m)2 + (y'/S m)2 = 1 and the thickness of the shoal 

is d = -0.3 m + 0.5 my/l - (x'/5m)2 - (y'/3.75 m)2. 

The computing domain used in the model is the same as in Figure 5.27 

except for two sponge layers with width 2 m and 3 m located behind the wave- 

maker and on the end of the beach. Instead of a shoreline boundary, a minimum 

water depth of 0.07 m is used in the model. The center of then source region for 

generating the corresponding monochromatic wave is located at the experimental 

wavemaker location. The time step used in the model is At = 0.01 s and the 

grid sizes are chosen as Ax = 0.1m and Ay — 0.05 m, resulting in a maximum 

Courant number of 0.84. The total number of time steps for the model to run is 

4001, which corresponds to an elapsed time of 40 wave periods. The 2-D numerical 

filter described in Section 3.5 was applied for every 100 time steps, which effec- 

tively eliminated short wave components generated by the nonlinear interaction. 

From numerical experiments, it was found that the model became unstable if the 

same filter was used less frequently. The effect of the high-order filter on other 

long waves (i.e. wavelength longer than 10 grid sizes) was minimal, as shown in 

Section 3.5 and evident from the resulting wave heights computed from the model. 
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Figure 5.27: Experiment layout for wave focusing experiment of Berkhoff et al 
(1982). 

The computed results obtained from the present model based on Nwogu's 

Boussinesq equations or the fully nonlinear Boussinesq equations are similar, prob- 

ably due to relatively small effect of nonlinearity. For this reason, only the results 

from the Nwogu's model will be shown in the following. Figure 5.28 shows the 

spatial profile of surface elevation rj at the last time step (it = 4001) obtained 

from the model. The light and dark shade regions correspond to positive and neg- 

ative values of »/, respectively. The solid lines in the plot denote the contours of 

bottom geometry. The surface profile shows very strong focusing of wave energy 

behind the shoal, indicating the effect of wave diffraction is quite large in that 

region. For this reason, the traditional ray tracing method which only considers 
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refraction is not valid here. The mild slope model which includes both refraction 

and diffraction is applicable to this case. The uniformly grey shade in the two 

sponge layer regions corresponds to near zero surface elevation, which indicates 

that wave energy was absorbed properly at these boundaries. 

Figure 5.29 shows the time series of surface elevation 77 at various locations, 

with their corresponding coordinates (x, y) labeled in the plot. Since the model 

was started with zero initial conditions for all variables, surface elevations 77 at t = 

0 are zero at every location. As waves begin to be generated in the source region 

and propagate across the domain, surface elevations at these specified points start 

to increase in magnitude and then approach corresponding stable values. For those 

points closer to the wavemaker, the transition time from zero to stable values is 

shorter than that for points far away from the wavemaker. Surface elevations 

at the points behind the strong focus region show narrower crests and broader 

troughs, indicating that the effect of nonlinear interaction is important on the 

transformation of waves in this region. Though no experiment data available 

to compare with these computed time series of 77, Figure 5.29 shows that the 

computing wave field reaches a stable state at the time t = 30 s. 

For the numerical model, wave heights at various locations in the domain 

are computed from the corresponding time series of surface elevations 77. Only 

four segments of data corresponding to the last four periods (i.e. from t = 36s 

to t = 40 s) are used for wave height evaluation. First, the wave height for each 

segment of data is determined by finding the maximum and minimum values of 

77. Then the averaged value of these four wave heights is the corresponding wave 

height of the model. The computed wave heights are compared to experimental 

data along all eight transects where measurements of wave height were available, 

as shown in Figure 5.30. 
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Figure 5.28: Top view of 3-D shaded graph of surface elevation at time step 
it = 4001 (t = 40s). 
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Figure 5.29: Computed time series of surface elevation at various locations. 

The computed results of wave heights from the numerical model agree quite 

well with experiment data, in sections both parallel and normal to the incident 

wave direction. In the past, models based on the mild slope equation have been 

applied to simulate wave transformation for this case; see, for example, Berkhoff 

et al (1982), Kirby and Dalrymple (1984), and Panchang and Kopriva (1989). 

Though valid for a wide range of water depth including this experiment, the 

mild slope equation itself does not account for the effect of nonlinearity, which is 

important for this experiment. Of the mild slope models mentioned above, only 

the one given by Kirby and Dalrymple (1984) considered the effect of nonlinear 

interaction by using a third-order Stokes wave dispersion. Not surprisingly, results 

from the model of Kirby and Dalrymple (1984) compared the best with the data, 

while other mild slope models based on the usual linear dispersion relation gave 
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only satisfactory results. The importance of nonlinearity is also verified by the 

present model which includes the effect of weakly nonlinear interaction. The wave 

height distribution obtained from the present model is in much better agreement 

with the experiment data compared to those from linear mild slope models. 

5.6.2    Case 2: experiment of Chawla (1995) 

To study wave transformation and to provide measured data for the verifi- 

cation with the numerical models of Ref/Dif 1 (Kirby and Dalrymple, 1994) and 

of Ref/Dif S (Kirby and Ozkan, 1992), a series of experiments were conducted 

in the rectangular basin at the Center for Applied Coastal Research in the Uni- 

versity of Delaware (Chawla, 1995; Chawla et al, 1996). The incident waves in 

the experiment consist of both regular and random waves, with short and long 

wave periods, small and large wave heights, narrow and broad frequency bands, 

and narrow and broad directional distributions. The experiment layout and the 

coordinate system are shown in Figure 5.31. Notice that the coordinate system 

for this case is a standard one with x axis in the wave propagation direction. A 

circular shoal with radius of 2.57 m is built on the flat bottom basin whose di- 

mensions are given by Lx = 18.2 m and Ly = 20 m. The thickness of the shoal is 

given by 

Sshoai = 7(9.1 m)2 - r2 - 8.73 m, if r < 2.57 m (5.19) 

where r = yj(x — xc)
2 + (y — yc)

2 is the horizontal distance from the center of 

the shoal (xc = 5.0 m, yc = 8.98 m) to the point (x, y). Notice that yc is not 

at the exact center line of the basin. As will be shown later from model results 

and experiment data, the resulting wave field is not symmetric due to this slightly 

off-center shoal. 
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Figure 5.31: Experiment setup of Chawla (1995). 

Incident waves are generated by a 3-D paddle-type wavemaker on the left 

end of the domain and propagate across the basin to the right end, where a 

beach consisting of small rocks dissipates the incoming wave energy. The top and 

bottom ends are vertical walls which reflect waves back to the domain. An array 

of 9 capacitance wave gages were placed at different locations inside the basin to 

collect time series of surface elevations. These locations are marked by transects 

A - A, B - B, C - C, D - D, E - E, F - F, and G - G in Figure 5.31. The 

exact coordinates for each gage are given by Chawla (1995). 

Four experiments (TEST 1-4) were conducted for nonbreaking regular 

waves. Due to data contamination in TEST 3, only three sets of data (TEST 

1, TEST 2 and TEST 4) are available from the experiments. The correspond- 

ing wave heights, wave periods, and kh values for each test are listed in Table 
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Table 5.1:   Wave heights, wave periods and kh values for the three tests of non- 
breaking regular waves. 

Wave height (cm) Wave period (s) kh 
TEST1 0.98 0.75 3.18 
TEST 2 2.01 0.75 3.18 
TEST 4 1.18 1.0 1.90 

5.1. TEST 1 and TEST 2 are for two waves of shorter period and different wave 

heights. TEST 4 is for a longer period of wave and a medium wave height. The 

present model is applied to all these three tests and comparison between model 

and data will provide detailed information for the model performance. 

Though the values of wave period T and water depth at the wavemaker h0 

are close or equal to those in the experiment of Berkhoff et al. (1982), the resulting 

wave fields for these two experiments are quite different, mainly due to variation 

of bottom geometry. Using ray tracing method, Chawla (1995) computed the 

corresponding wave ray diagrams. It was found that the focusing of waves in the 

all the three tests was quite severe (Chawla, 1995) and all of the focusing occur on 

the top of the shoal. However, the focus of waves in the experiment of Berkhoff 

et al. (1982) is at the area much further behind the shoal. Due to the sloping 

beach, waves in the experiment of Berkhoff et al. (1982) continue shoaling after 

passing the shoal. 

We used the present model with weakly nonlinearity to simulate all three 

tests of Chawla (1995). The corresponding grid sizes are Ax = 0.05m, Ay = 

0.1m, time step is At = 0.01s, the total number of time steps is nt = 4001, 

and the numerical filtering is applied every 400 time steps. The time series of 

surface elevations T) from the model results and experiment data for TEST 4 at 
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selected wave gage locations are shown in Figure 5.32. Good agreements between 

the model and data are found, not only for wave heights and wave phases, but 

also for the asymmetry of wave shapes. 

Notice that the necessary phase shifting for the data at certain locations 

had been performed prior to the comparison. In the experiment, there was only 

one gage array which consists of nine gages to collect data. The gage array was 

placed at 14 different positions across the domain. Though the same wave con- 

dition could be generated for each of these gage positions and the phases for the 

9 gage are the same, it is not guaranteed that the phases for different gage ar- 

ray position are the same. Therefore, it is necessary to adjust experiment data 

by shifting phase for meaningful comparison with the numerical results. For each 

gage array, only one gage is required to do phase shift due to exact synchronization 

for the data in the same gage array. 

After wave fields reached stable condition, zero-upcrossing method was 

applied to the corresponding time series of surface elevation to obtain wave heights. 

For experimental data, a time interval of 10 period data segment was used to 

compute averaged wave height. Prior to wave height evaluation, a Butterworth 

fifth-order bandpass filter was applied in order to eliminate noise from the signal. 

For time series computed from the model, the data segment from t = 36 s to t — 

40 s was used to compute wave heights. Since numerical filtering has been applied 

spatially for every 400 time steps in the model simulation, it is not necessary to 

apply extra filtering to the resulting time series. Comparisons of wave amplitudes 

between the model and data along all transects from A — A to G — G are shown 

in Figure 5.33, 5.34 and 5.35 for TEST 1, TEST 2 and TEST 4. 

Due to slightly off-center position for the shoal location in the basin, the 

wave height distributions along y axis are not symmetric. The asymmetry become 
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Figure 5.32: Time series comparison of surface elevation between numerical re- 
sults ( ) and experiment data ( ) of Chawla (1995). 

more apparent for transects away from the wavemaker, indicating increasing ef- 

fects of side wall reflection. The effect of asymmetry and the zigzag variation of 

wave height distribution along y axis was accurately predicted by the numerical 

model. 

Chawla (1995) applied two models of Ref/Dif 1 to simulate all test cases 

and compared results with experiment data. These two models are all based on the 

mild slope equation, with one called Stokes model due to the inclusion of nonlinear 

interaction by using a third order Stokes dispersion (Kirby and Dalrymple, 1984), 

and the other called linear model which uses the usual linear dispersion relation 

to compute the wavenumber. As shown by Chawla (1995), the computed results 

from the Stokes model are in better agreement with the experiment data than 
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Figure 5.33: Comparison of wave height along specified transects between the 
present model ( ) and data (o o o) of TEST 1. 
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Figure 5.34: Comparison of wave height along specified transects between the 
present model ( ) and data (o o o) of TEST 2. 
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Figure 5.35: Comparison of wave height along specified transects between the 
present model ( ) and data (o o o) of TEST 4. 
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Table 5.2:   Comparisons of index of agreement between data and the three mod- 
els. 

Present model Stokes model Linear model 
TEST1 0.8481 0.7516 0.7257 
TEST 2 0.8435 0.8214 0.7064 
TEST 4 0.9535 0.8622 0.8369 

those obtained from the linear model. However, as will be demonstrated below 

by computing an index of agreement, the results from the present model compare 

better with the data than those from the Stokes model. 

The index of agreement di was proposed by Wilmott (1981) for the objec- 

tive comparison between two sets of data, which is given by 

di = l- 

£[|y(i)-z| + K?)-*|]2 

3=1 

(5.20) 

where x(j) are the measured data to be compared with, y(j) are the predicted 

values from the model, and x is the mean value of x(j). A perfect agreement 

between data and model corresponds to di = 1, while a completely disagreement 

results in di = 0. Instead of comparing results for each transect, we compute the 

index of agreement for all transects for the present model and the two Ref/Dif 

models. The corresponding index of agreement for each of the three tests (TEST 

1, TEST 2 and TEST 4) are all computed and the corresponding results are given 

in Table 5.2. 

For all the three testing cases, the resulting indices of agreement from the 

present model axe better than those from the two Ref/Dif 1 models, especially 

for the cases of TEST 1 and TEST 4, the differences between these results are 
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about 10%. Among two Ref/Dif 1 models, the computed indices of agreement 

from the Stokes model are larger than those from the linear model. These results 

indicate that the effect of nonlinearity is important for wave transformation in 

all the testing cases. Because of the strong focusing and the limitation of the 

parabolic approximation for the two Ref/Dif 1 models, the present model gives 

the best predictions for wave transformation. 

Further analysis from the results of TEST 2 shows that the wave height 

distributions along the transect A - A after the shoal predicted by the Stokes 

model are in better agreement than those from the present model. However, 

for other transects which are parallel to the wavemaker, agreements between the 

computed results from the present model are better than those from the Stokes 

model. 
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Chapter 6 

CONCLUSIONS 

In this study, we have derived a set of fully nonlinear Boussinesq equations 

and developed the corresponding numerical model for simulating wave transfor- 

mation in coastal regions. Following the approaches of Nwogu (1993) and of Chen 

and Liu (1995), the internal flow field is expanded with respect to the velocity 

potential at a depth za in the water column. By substituting the power series ex- 

pansion into the original governing equations and by keeping all nonlinear terms, 

the fully nonlinear Boussinesq equations are obtained. Due to the use of velocity 

potential at the optimum water depth as the dependent variable, the resulting 

equations have improved linear dispersion properties in intermediate depth water, 

similar to the results obtained by Nwogu (1993) and by Chen and Liu (1995). In 

addition, since no assumption of small nonlinearity is made in the derivation, the 

model is valid for simulating cases of wave propagation involving strong nonlinear 

interaction, such as wave shoaling prior to wave breaking. 

To gain insight into the fully nonlinear Boussinesq equations, we have ob- 

tained the superharmonic and subharmonic coefficients for the second order bound 

waves whose wavenumber vectors and frequency are the sum and difference of the 

primary waves. We also have derived the corresponding cubic Schrödinger equa- 

tion which governs the long term evolution of a wave train with a narrow band of 

frequencies and wavelengths.  Comparisons are made between the model results 
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and the exact solutions by Dean and Sharma (1981) and by Mei (1989). The 

higher order nonlinear terms in equations are found to be important for studying 

nonlinear interaction between waves and waves, and waves and currents. 

A high order numerical model has been developed to obtain solutions to the 

fully nonlinear Boussinesq equations. The fourth order Adams-Bashforth-Moulton 

predictor-corrector scheme is employed in the model for time stepping. For spatial 

derivatives, the fourth order and second order finite difference schemes are applied 

to discretize the first order derivative terms and the second or higher order terms 

in the equations, respectively. Due to the use of fourth order schemes for first 

order derivative terms, the corresponding truncation errors are smaller than the 

dispersive terms, making it unnecessary to substitute the truncation errors back 

into the discretized equations, as required by other low order schemes for a typical 

time step and grid size. To increase the stability range and the efficiency of the 

model, the momentum equations are rearranged so that the solutions for velocity 

variables are based on a system of tridiagonal matrices. 

Linear stability analysis has been performed based on von Neumann's 

method. For the case of constant water depth and 1-D flow, the stability range 

is determined numerically by evaluating the eigenvalues from the corresponding 

amplification matrix. The moduli of the eigenvalues are related to the Courant 

number Cr, the dimensionless wavenumber kAx, and the ratio of water depth to 

grid size A/Ax. For the case of using one predictor and one corrector at each time 

step, the scheme will be stable if the Courant number is less than 0.8, regardless 

the magnitude of the other two parameters. 

The present model utilizes three boundary conditions, which include the 

wall (reflecting) boundary, the radiation (absorbing) boundary, and the incident 

(generating) boundary. Since the model uses the velocity at a certain depth as the 
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dependent variable, it is not sufficient to make the volume flux zero by specifying 

zero normal velocity at a reflecting boundary. The extra condition is that the 

normal derivative of the surface elevation be zero at the boundary. With these 

two conditions, the resulting volume flux across the reflecting boundary is, to the 

order of approximation in the model equations, essentially zero. In addition, the 

model also utilizes the no-shear condition at the reflecting boundary, requiring 

that the normal derivative of the tangent velocity be zero. 

For the absorbing boundary, the present model uses a sponge layer to 

dissipate the energy for outgoing waves. Though it is sufficient to use the radiation 

conditions proposed by Sommerfeld (1949) and by Engquist and Majda (1977) for 

some special cases, the generally unknown property of phase speed for the outgoing 

waves in real applications makes the use of these radiation conditions problematic. 

Following the approach by Israeli and Orszag (1981), terms representing the effect 

of linear friction or viscosity have been included in the momentum equations and 

the energy of outgoing waves was dissipated over the areas of sponge layer. 

To take advantage of using a sponge layer for absorbing the energy of 

outgoing waves, it is necessary to generate waves inside the computing domain. We 

first added a source function with unknown amplitude to the continuity equation. 

We then obtained, based on the method of Green function, the exact linearized 

solution to the source function from the given characteristics of the desirable wave. 

Several examples of generating sinusoidal waves have been shown. 

The 9 point 1-D filter proposed by Shapiro (1970) is employed in the model 

to eliminate short wave components which are generated by the nonlinear inter- 

action and might cause stability problems. Two versions of the model, one with a 

numerical filter applying every 100 time steps and the other without any filtering, 

were applied to study the evolution of waves in a closed basin. The asymmetric 
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surface elevation resulted from the version of the model without filtering indicated 

that the existence of short waves affects the accuracy of the computing results. 

Models for simulating wave breaking and wave runup have been reviewed 

briefly. The eddy viscosity breaking model, which was employed by Heitner and 

Housner (1970) and by Zelt (1991), is used here to simulate wave breaking. Cor- 

responding eddy viscosity terms are added into the model equations to dissipate 

wave energy due to breaking. The breaking criterion is based on the horizontal 

gradient of velocity. In the long wave limit, the gradient of velocity is equivalent to 

the slope of surface elevation. The 1-D breaking model has been applied to study 

the shoaling and breaking of random waves. The model results agree well with 

experimental data. For the 2-D breaking model, however, more research work is 

needed. 

To overcome the difficulties for the Eulerian system to specify moving a 

boundary for simulating wave runup, it is proposed in this study to maintain a 

thin layer of water over those physically dry grids. However, due to the abrupt 

change of variables around the moving shoreline, this model experiences stability 

problems at present and is left for future investigation. 

To examine its validity, the present model has been applied to study a 

number of wave propagation cases. For the one dimensional case, the model has 

been applied to study the evolution of solitary waves in constant water depth, the 

permanent form solutions of solitary waves with large nonlinearity, the shoaling of 

solitary waves over constant slopes, the propagation of undular bores over constant 

water depth, and the shoaling and breaking of random waves over a beach. For 

the two dimensional case, the model has been used to study the evolution of 

waves with an initial Gaussian shape of surface elevation in a rectangular basin, 

the transformation of monochromatic waves over submerged shoals.  The model 
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results have been compared with available analytical solutions, experimental data, 

or other numerical results. The close agreements for the results between these 

models showed that the present model is capable of simulating shallow water 

wave propagation for general coastal engineering practice. 
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Appendix A 

SOLITARY WAVE SOLUTION FOR EXTENDED 

BOUSSINESQ MODEL 

Following the approach of Schember (1982) who obtained the approximate 

solution for solitary waves from the standard Boussinesq equations, we seek the 

corresponding solution from the extended Boussinesq equations derived by Nwogu 

(1993). 

For convenience, the dimensionless form of Nwogu's equations for the case 

of 1-D horizontal flow and in constant depth is rewritten here as 

rjt + ux + S(TJU)X + fi2(a + l/3)uxxx   =   0 (A.l) 

ut + t)x + 6uux +(i2auxxt   =   0 (A.2) 

where 77 is the surface elevation, u the horizontal velocity at the elevation z — zQ, 

a is the coefficient related to reference water depth za: subscripts t and x denote 

partial derivatives respect to time t and spatial coordinate x, and \i = kh and 

6 = H/h (k is the wavenumber, H the amplitude) are dimensionless parameters 

which represent the effects of dispersion and nonlinearity, respectively. 

Instead of the velocity u, we use the velocity potential <f> (such that u = <j>x) 

as an dependent variable. Then equations (A.l) and (A.2) become 

rjt + <f>*x + Kv4>x)x + V2{a + lß)<j>xxxx   =   0 (A.3) 
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'* 
& + »? + ö(^*)2 +/*V**t   =   0 (A.4) 

Substituting 77 from (A.4) into (A.3) and retaining terms which are consis- 

tent with the ordering in the Boussinesq equations, we have 

- <fa + <t>*x - S(2<l>x<f>xt + Mxx) + A(a + lß)<f>xxxx - a<f>xxtt] = 0{62, Sfi2) (A.5) 

The truncated terms on the right hand side of the above equation are 

0{6\ Sfi2) = ^82<j>x<f>xx + 6n2a{<f>xxt<l>x)x (A.6) 

which is responsible for the fact that the analytic solitary waves differ by a small 

amount from their numerical counterparts, even in the limit of small grid size Ax 

and small time step At. We introduce a new coordinate £ as 

£ = x - Ct (A.7) 

where C is the phase speed of the solitary waves. The relation between the old 

and new coordinates are 

<f>x = <f>', <f>t = -C<f>' (A.8) 

where primes denote differentiation with respect to the new variable £. Then 

equation (A.5) is transformed into an ordinary differential equation 

(1 - C2)<f>" + Z8C<j>'<j>" + fi2[(a + 1/3) - aC2]f" = 0 (A.9) 

Integrating the equation (A.9) once results in 

(1 - C2)<f>' + \SC{<J>')2 + fx2[(a + 1/3) - aCV = G1 (A.10) 

Multiplying equation (A.10) by 2<f>" and integrating once yields 

(1 - C2)(<f>')2 + SC(4>')3 + A{<* + 1/3) - ccC2]{4>")2 = 2G1(f>' + G2      (A.ll) 
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where the integration constants G\ and G2 are zero for solitary waves since <f>' = 

<f>" = <f/" = 0 as I £ |—> 00. Assume the solution form of <f>' to be 

<f>' = Asech2(5£) (A.12) 

The quantities A and 5 are obtained by substituting expression (A.12) into equa- 

tion (A.ll) 

A   =   ^zl (A.13) 

f C2 -1 ] * 
5   =   \V[(a+l/3)-aC2]J (A'14) 

With the solution of <f>', we obtain the corresponding solution for the surface 

elevation from equation (A.4) 

rj = AlSech2(BO + A2sech4(B() (A.15) 

where 

C2 — 1 
Al   =   38[(a + l/3)-aC>] (A'16) 

(C2-l)2[(o: + l/3) + 2aC2] 
2 2£C2     [(a +1/3) - aC2] l      U 

The solitary wave crest is located at the origin of the new coordinate sys- 

tem, from which we have 77 = 1 at £ = 0 and equation (A.15) becomes 

1 = Ax + A2 (A. 18) 

The above equation is equivalent to 

2<*(C2)3 - (3a + 1/3 + 2aS)(C2)2 + 28(a + 1/3)(C2) + a + 1/3 = 0     (A.19) 

which is a third order polynomial equation for C2. The corresponding solution is 

evaluated once the wave height to water depth ratio S is given. 
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It is convenient to write the solitary wave solutions in original coordinates 

and in dimensional form, which are summarized here: 

T)   =   T) = Aisech2[B(x-Ct)] + A2secb4[B(x-Ct)] (A.20) 

u   =   Asech2[B(x - Ct)} (A.21) 
C2 - gh 

A   =        c
y (A.22) 

[ C2-gh \* 

C2-gh 
Al   =   Z[(« + lß)gh-aC*]h ^A-24) 

(C2-gh)2[(a + l/3)gh + 2aC2} 
2 2ghC2     [{a + lß)gh-aC2} [A'Zb) 
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Appendix B 

WAVE GENERATION BY SOURCE FUNCTION 

For waves in two horizontal directions and constant depth, the generalized 

form of the linearized Boussinesq and shallow water equations may be written as 

rjt + hV • u + QlA
3V2(V • u)   =   0 (B.l) 

ut + gVri + ah2V2ut   =   0 (B.2) 

where h is the water depth, g is the gravitational acceleration, rj is the surface 

elevation and u is a velocity vector in the horizontal plane. The values of oc\ 

and a have different definitions depending on the form of equations. For Nwogu's 

(1993) extended Boussinesq equations, u is the velocity at the elevation z = za, 

and ai = a + 1/3, with a determined by: 

For the Boussinesq equations of Peregrine (1967), u is the depth-averaged velocity, 

ax — 0, and a = —1/3. For shallow water equations, u is depth-averaged velocity 

and ai = a = 0. 

Alternatively, we may introduce a velocity potential <f> defined such that 

u = Vcj>, which gives the model equations 

7/t + WV + o:ifc3V2VV   =   0 (B.4) 

(f>t + gr} + ah2V2<l>t   =   0 (B.5) 
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The linear dispersion relation for these equations may be obtained by considering 

a plane wave solution in 1-D 

77   =   r]oexp[i(kx — uit)] 

<f>   =   (f>0exp[i(kx — ut)] 

and is given by 

u ~ 9k h 1 - a(khy (B-6) 

where u is the angular frequency and k the wavenumber. The amplitude of the 

potential is given in terms of the wave amplitude r)0 by 

ig 

*° = uil-aikh)^0 <B'7) 

B.l    Source function in continuity equation 

We first add a source function f(x, y, t) to (B.l) and find the corresponding 

solution of the following equations 

jfe + hV • u + ai/i3V2(V • u)   =   f(x,y,t) (B.8) 

ut + gVq + ah2V2ut   =   0 (B.9) 

We introduce a velocity potential <j>, integrate (B.9) once, and eliminate 77 in favor 

of § to obtain the equation 

<t>tt - ghV2<j> + ah2V2<f>tt - axghzV2V2(j> = -gf(x, y, t) (B.10) 

We now assume that the y dependence of <j> and / is suitable for a Fourier transform 

and introduce 

1    f°° ~ 
4>(x,y,t)   =   — y_   <f>{x,\,t)exp(i\y)d\ (B.ll) 

1    f°° ~ 
f(x,y,t)   =   7^J_   f(x,\,t)exp(i\y)d\ (B.12) 
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leading to an equation for <j> in x, t. We further introduce a Fourier transform in 

time 

1    /» 1        f»    . 
<f>(x, X,t)   =   — I     (f>(x,\,u;)exp(—iujt)<kü (B.13) 

1      foo    , 
f(x,X,t)   =   — /     /(x,A,u;)exp(-zu;i)cL; (B-14) 

^7T J—oo 

(B.15) 

and obtain the fourth order ODE 

Aj>{4) + B4>" + Cj> = gf (B.16) 

where 

A   =   argh3 

B   =   gh + au2h2-2a1gh3X2 

C   =   u2-ghX2-au2h2X2 + al9h3X4 (B.17) 

The governing equation reduces to a second-order equation for either the long 

wave or Peregrine models, where A = 0. Homogeneous solutions of (B.16) corre- 

sponding to progressive waves are given by 

j>h{x) = exp(±ilx) (B.18) 

where I = y/k2 — A2. In order to obtain the particular solution for $, we seek a 

Green function G(x, x') which satisfies 

AG^ + BG" + CG = S{x-x') (B.19) 

We impose the boundary conditions on the Green function to correspond to the 

condition that waves are radiating away from the source region. 

<?<»> - (+il)nG,      i{n) -H- {+il)ni;     x -> +oo 

G<») _> (-il)nG,      ${n) -* (-»/)"&     x -» -oo (B.20) 
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Integrating equation (B.19) with respect to x from x' — 0 to x' + 0, we have 

r 2?'4-0 

AG'"(x, arOßio + BG'(x, x')\*=H°0 + C G(x, x')dx = 1 (B.21) 
Jx'-O 

The solution for the Green function takes different forms depending on whether 

the value of A is equal to zero. 

B.l.l    Case 1: A = 0 

If A = 0(ai = 0), equation (B.21) becomes 

BG'(x,x%zx
x,±

0
0 + C /       G(x,x')dx = 1 (B.22) 

In addition to boundary conditions (B.20), we require G to be continuous at 

x = x'. Equation (B.22) then reduces to 

BG\x,x')\Zitl = l (B.23) 

We assume the Green function to be given by 

G{x,x') = < 
aexp[il(x — x')]   if   x > x' 

aexp[il(x' — x)]   if   x < x' 
(B.24) 

which automatically satisfies the boundary conditions (B.20) and is continuous at 

x = x'. Substituting (B.24) into (B.23) results in 

a = 
2W 

For normally incident waves (A = 0) this reduces to 

i ik 

(B.25) 

2kB        W (R26) 
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B.1.2    Case 2: A ^ 0 

For A ^ 0(a = —0.39, A < 0), we require that G, (?', G" are continuous 

at x = x'. Thus the second and third terms in equation (B.21) drop out and we 

have 

AG"\x,x')\Zit°Q = l (B.27) 

We assume the form of Green function to be 

aexp[ih(x — x')] + bexp[il2(x — x')]   if   x > x' 
G(x,x')=l L (B.28) 

I  aexp[ili(x' — x)] + 6exp[z72(x' — x)]   if   x < x' 

where /i and l2 are the positive real and imaginary wavenumbers which satisfy 

the homogeneous form of the governing equation (B.16), given by 

. (B-y/B*-AACy     f 
h =  {       -TA       )=l 

h   =   [ u j   =iL (B.29) 

with / > 0 and L > 0. The definition of G in equation (B.28) automatically 

satisfies the boundary conditions (B.20) and the continuity of G and G" at x = x'. 

The continuity of G' at x = x' results in 

b = i(j\a (B.30) 

Substituting equation (B.28) into equation (B.27) gives 

A[(ilfa + (-Lfb - (-Ufa - L3b] = 1 (B.31) 

From equations (B.30) and (B.31), we obtain solution for a and 6, 

a   =   2Al(P + V) (B-32) 

b   =   2AL(P + V) (B-33) 
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In summary, the general form of solution for Green's function is 

G+ (x, x') = a exp[il(x - x')] + b exp[-L(x - x')]   if   x > x' 

G-(x,x') = aexp[il(x' -x)] + bexj>[-L(x' - x)]   if   x < x' 
G(x,x') = < 

(B.34) 

B.1.3    Solution and choice of source function f 

Now we seek solution of <^ by using Green's function G. Multiplying (B.19) 

by <j>{x') and integrating with respect to x' from —oo to +00 gives 

<j>(x')[AG(x, x'p + BG(x,x')" + CG(x, x')]dx' = I      4>{x')8{x - x')dx' 
-00 J—oo 

(B.35) 

Integration by parts, use of the boundary conditions (B.20), and use of the defi- 

nition of the delta function then gives 

4{x)   =    l+°° G{x,x')gf{x')dx' 
J—oo 

G+(x,x')gf(x')dx'+ /      G-(x,x')gf(x')dx'       (B.36) 
■OO Jx 

In principle, the source function / can be of any shape. For the examples that 

follow, we have adopted a smooth Gaussian shape for /, 

f(x) = Dexp{-ßx2) (B.37) 

which keeps the source function fairly well localized and which does not introduce 

the need for any additional numerical filtering. The amplitude D is a constant 

to be determined by matching the source to a desired progressive wave amplitude 

Tjo far away, while ß controls the width of the source region. Then for sufficiently 

large value of x, the solution approaches 

i(x)   =    f  G+{x,x')gf{x')dx' 
J—oo 

~   gD{ahexv{ilx) + bI2exp(-Lx)] (B.38) 
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where I-y and I2 are defined by 

/oo 
exp(—ßx'2) exp(—ilx')dx' 

-oo 

W-£) <B-39> 
/oo 

exp(—ßx12) exp(Lx')dx' 
-oo 

f exp g) (B.40) 

For sufficiently large re, the contribution of last term in (B.38) is negligible. There- 

fore, the velocity potential away from source regions becomes 

<j>(x) = gDali exp(ilx) (B.41) 

The corresponding surface elevation is 

fj(x) = — iioDaIi[l — a(kh)2] exp(ilx) = r)0exp(ilx) (B.42) 

which gives the relation between the source amplitude D and the desired wave 

amplitude ??o, 

D = Uall(l -°a(khY) (B-43) 

In many cases, wave data is available in terms of a frequency-direction 

spectrum. In order to provide the model coefficients in this representation, we 

may take A = k sin 6 and I = k cos 0, where 6 is the angle between the wave vector 

and the x axis in a right handed sense. Using these, we obtain 

ih 

.    °   =   ~2cos9(u2-aigk4h3) (B'44) 
2Tiocos6{üj2-a1gk4h3) 

D   ~        «/!*(! - a{hhY) (B-45) 
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B.2    Source function in momentum equation 

Alternately, let us add a source term in the vector momentum equation 

according to 

u< + gVr) + ah2V2ut = -gVP (B.46) 

where P is a normalized pressure distribution having units of length. Using the 

velocity potential, (B.46) may be integrated to give 

<t>t+gr) + ah2<f>xxt = P (B.47) 

Combining the continuity and Bernoulli equations then gives 

<t>u - ghV2<j> + ah2V2cf>tt - aigh3V2V2</> = -Pt (B.48) 

Comparing (B.47) and (B.10) gives 

P = gjfdt (B.49) 

Introducing the Fourier transform for P, 

P = J^JJP eMi(xV ~ ut)]d\du (B.50) 

we obtain 

P = -/ (B.51) 

The remainder of the solution for this case follows from the previous section. 
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